• Title/Summary/Keyword: Simulation Acceleration

Search Result 945, Processing Time 0.029 seconds

Vibration Analysis of a Rotary Compressor

  • Han, Hyung-Suk;Hwang, Seon-Woong;Koo, Jeong-Seo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.43-53
    • /
    • 2004
  • The vibration of a rolling piston type rotary compressor for air-conditioning use is analyzed numerically and experimentally. Multibody dynamic analysis methods to predict the vibration are given. The compressor is modeled as a multibody system composed of bodies, joints, and force elements. Experimental results are shown to compare with simulation results. A sensitivity study using different variables that affect the compressor vibration is also carried out. It is found that the mass of the weight balancer plays an important role in acceleration.

Suboptimal Kalman filter design with pseudomeasurements for maneuvering target tracking (목표물 추적을 위한 가측정치를 이용한 준최적 칼만필터의 설계)

  • 송택렬;안조영;박찬빈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.556-561
    • /
    • 1987
  • This paper presents a suboptimal Kalman filter design method for the problem of tracking a maneuvering target. The design method is essentially based on linear target dynamics and linear-like structured measurements called pseudomeasurements. The pseudomeasurements are obtained by manipulating the original nonlinear measurements algebraically. The resulting filter has computational advantages over other filters with similar performance. Monte Carlo computer simulation results are included to demonstrate the effectiveness of the proposed suboptimal filter associated with the target acceleration model.

  • PDF

A Study of Target Motion Analysis For a Passive Sonar System with the IMM (IMM을 이용한 수동소나체계의 기동표적추적기법 향상 연구)

  • 유필훈;송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.148-148
    • /
    • 2000
  • In this paper the IMM(Interacting Multiple model) algorithm using the MGEKF(Modified Gain Extended Kalman Filter) which modes are variances of the process noises is proposed to enhance the performance of maneuvering target tracking with bearing and frequency measurements. The state are composed of relative position, relative velocity, relative acceleration and doppler frequency. The mode probability is calculated from the bearing and frequency measurements. The proposed algorithm is tested a series of computer simulation runs.

  • PDF

Vibration Analysis of a Rolling Piston Type Rotary Compressor (구름 피스톤 이용 회전식 압축기 진동 해석 연구)

  • 한형석;황선웅;이은섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.205-213
    • /
    • 2003
  • This paper is concerned with a roiling piston type rotary compressor for air conditioning use. Vibration of the compressor is analyzed numerically and experimentally. Multibody dynamic analysis methods to predict the vibration is given. The compressor is modeled as a system composed of bodies, joints, and force elements. Experimental results are also shown to be compared with simulation results. A sensitivity study using different variables that affect the compressor vibration is also carried out. It is found that the mass of weight balancer plays an important role in acceleration.

Interval Estimations for Reliablility in Stress-Strength Model by Bootstrap Method

  • Lee, In-Suk;Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.6 no.1
    • /
    • pp.73-83
    • /
    • 1995
  • We construct the approximate bootstrap confidence intervals for reliability (R) when the distributions of strength and stress are both normal. Also we propose percentile, bias correct (BC), bias correct acceleration (BCa), and percentile-t intervals for R. We compare with the accuracy of the proposed bootstrap confidence intervals and classical confidence interval based on asymptotic normal distribution through Monte Carlo simulation. Results indicate that the confidence intervals by bootstrap method work better than classical confidence interval. In particular, confidence intervals by BC and BCa method work well for small sample and/or large value of true reliability.

  • PDF

Study on the Dynamic Model and Simulation of a Flexible Mechanical Arm Considering its Random Parameters

  • He Bai-Yan;Wang Shu-Xin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.265-271
    • /
    • 2005
  • Randomness exists in engineering. Tolerance, assemble-error, environment temperature and wear make the parameters of a mechanical system uncertain. So the behavior or response of the mechanical system is uncertain. In this paper, the uncertain parameters are treated as random variables. So if the probability distribution of a random parameter is known, the simulation of mechanical multibody dynamics can be made by Monte-Carlo method. Thus multibody dynamics simulation results can be obtained in statistics. A new concept called functional reliability is put forward in this paper, which can be defined as the probability of the dynamic parameters(such as position, orientation, velocity, acceleration etc.) of the key parts of a mechanical multibody system belong to their tolerance values. A flexible mechanical arm with random parameters is studied in this paper. The length, width, thickness and density of the flexible arm are treated as random variables and Gaussian distribution is used with given mean and variance. Computer code is developed based on the dynamic model and Monte-Carlo method to simulate the dynamic behavior of the flexible arm. At the same time the end effector's locating reliability is calculated with circular tolerance area. The theory and method presented in this paper are applicable on the dynamics modeling of general multibody systems.

Disaster Risk Analysis of Domestic Public Institutions 1 - Focusing on Simulation Training and An Attitude Survey - (국내 공공기관의 재난위험성 현황 분석 1 - 모의훈련과 의식조사를 통하여 -)

  • Seo, Gwangduck;Kim, Dongheon;Choi, Yuncheul
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.3
    • /
    • pp.337-345
    • /
    • 2015
  • As the modern society becoms industry acceleration and urbanization, disaster and safetry education becoms important to educate and exercise the people for the disaster response and safety. This study suggests safety management method by simulation training and an attitude survey. The researchers of the study suggest as followers: First must be about strengthening eduation that accords to responsibility and part. The second need about manual build and simulation training for expansion disaster and crisis management. The last must be consideration to reconstitute of organization which of be not up to the disaster and crisis management.

Modeling and simulation of RAON cryogenic system using EcosimPro

  • Byeongchang, Byeon;Bokuem, Kim;Denis, Groshev;Sangkwon, Jeong;Taekyung, Ki;Lingxue, Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.59-64
    • /
    • 2022
  • The cryogenic system of RAON which is Korea's first heavy ion accelerator was numerically modeled and simulated. EcosimPro which is widely used off-the-shelf numerical software for a large scale cryogenic system was used for the simulation. The model of SRF TF cryogenic system, which is the testbed of cryomodule, was firstly established. The integrity of system of SRF TF was confirmed by comparison of simulation and experimental results. The cool-down strategy to minimize the thermal stress of the cavity was simulated and an optimal strategy was established. In addition, the influence of valve and pump control parameters on the cooling time was investigated, and optimal control parameters were also derived. The cryogenic system of SCL3 that is a low-energy acceleration section including 55 cryomodules, valve boxes, and helium supply lines was also modeled. The soundness of the thermal shield system and interlock system of SCL3 was investigated.

Development of a Simulation Model based on CAN Data for Small Electric Vehicle (소형 전기자동차 CAN 데이터 기반의 시뮬레이션 모델 개발)

  • Lee, Hongjin;Cha, Junepyo
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.155-160
    • /
    • 2022
  • Recently, major developed countries have strengthened automobile fuel efficiency regulations and carbon dioxide emission allowance standards to curb climate change caused by global warming worldwide. Accordingly, research and manufacturing on electric vehicles that do not emit pollutants during actual driving on the road are being conducted. Several automobile companies are producing and testing electric vehicles to commercialize them, but it takes a lot of manpower and time to test and evaluate mass-produced electric vehicles with driving mileage of more than 300km on a per-charge. Therefore, in order to reduce this, a simulation model was developed in this study. This study used vehicle information and MCT speed profile of small electric vehicle as basic data. It was developed by applying Simulink, which models the system in a block diagram method using MATLAB software. Based on the vehicle dynamics, the simulation model consisted of major components of electric vehicles such as motor, battery, wheel/tire, brake, and acceleration. Through the development model, the amount of change in battery SOC and the mileage during driving were calculated. For verification, battery SOC data and vehicle speed data were compared and analyzed using CAN communication during the chassis dynamometer test. In addition, the reliability of the simulation model was confirmed through an analysis of the correlation between the result data and the data acquired through CAN communication.

Battle Simulator for Multi-Robot Mission Simulation and Reinforcement Learning (다중로봇 임무모의 및 강화학습을 위한 전투급 시뮬레이터 연구)

  • Jungho Bae;Youngil Lee;Dohyun Kim;Heesoo Kim;Myoungyoung Kim;Myungjun Kim;Heeyoung Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.619-627
    • /
    • 2024
  • As AI technology advances, interest in performing multi-robot autonomous missions for manned-unmanned teaming (MUM-T) is increasing. In order to develop autonomous mission performance technology for multiple robots, simulation technology that reflects the characteristics of real robots and can flexibly apply various missions is needed. Additionally, in order to solve complex non-linear tasks, an API must be provided to apply multi-robot reinforcement learning technology, which is currently under active research. In this study, we propose the campaign model to flexibly simulate the missions of multiple robots. We then discuss the results of developing a simulation environment that can be edited and run and provides a reinforcement learning API including acceleration performance. The proposed simulated control module and simulated environment were verified using an enemy infiltration scenario, and parallel processing performance for efficient reinforcement learning was confirmed through experiments.