• Title/Summary/Keyword: Simulation Acceleration

Search Result 945, Processing Time 0.031 seconds

A Study on the Intelligent Cruise Controller Design (지능 직선주행 제어기 설계에 관한 연구)

  • Rhee, Wook
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.666-668
    • /
    • 1998
  • An adaptive nonlinear observer-based longitudinal control law for vehicles is presented in this paper. It is assumed that for vehicle i knows only the distance between vehicle i and the preceding vehicle, i-1. An adaptive nonlinear state observer for vehicle i is developed to estimate the velocity and acceleration of the preceding vehicle, i-1. The communication of the position, velocity, and acceleration information is not used in the proposed method. It will be shown by mathematical analysis that the longitudinal control of vehicle can be implemented without an communication of the informations. It will be proven that the observation errors of the nonlinear states converge to zero asymptotically. To show the effectiveness of the proposed method, the simulation results are presented for the longitudinal control of the vehicle.

  • PDF

Design of Fault Tolerant Controller for Electromagnetic Supension System (자기부상시스템에서의 내고장성 제어기 설계)

  • Seong, Ho-Gyeong;Jo, Heung-Jae;Jeong, Seok-Yeong;Seong, So-Yeong
    • 연구논문집
    • /
    • s.30
    • /
    • pp.79-92
    • /
    • 2000
  • Chopper and sensors failures resulting from electric shock and mechanical vibration generated by rail irregularities are the serious problem deteriorating the performance in the electromagnetic suspension systems. Thus, this paper proposes a reliable output feedback control scheme for the electromagnetic suspension systems in the present of chopper, gap sensor and acceleration sensor failures. The designed controller is an extended version of a novel design technique which has the design method of the output feedback controller using dynamic compensator. The benefits of this scheme are demonstrated through the simulation and experimental results for proposed controller against chopper, gap sensor and acceleration sensor failures of electromagnetic suspension system.

  • PDF

SRAM소자의 SER 및 Latchup 신뢰성 연구

  • Lee Jun-Ha;Lee Heung-Ju;Jo Hyeon-Chan;Lee Gang-Hwan;Gwon O-Geun
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.05a
    • /
    • pp.63-66
    • /
    • 2005
  • A soft error rate neutrons is a growing problem for integrated circuits with technology scaling. In the acceleration test with high-density neutron beam, a latch-up prohibits accurate estimations of the soft error rate (SER). This paper presents results of analysis for the latch-up characteristics in the circumstance corresponding to the acceleration SER test for SRAM. Simulation results, using a two-dimensional device simulator, show that the deep p-well structure has better latch-up Immunity compared to normal twin and triple well structures. In addition, it is more effective to minimize the distance to ground power compared with controlling a path to the $V_{DD}$ power.

  • PDF

Dynamic Analysis of Jerking in Push-Pull Type Train (Push-Pull Type 철도차량 Jerking 현상 해석)

  • 김영준;박상규
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.502-509
    • /
    • 1998
  • The scheme to reduce jerking phenomena in one push-pull type trainset was proposed. To simulate the jerking between coaches, dynamic analysis model was made. This model could analyze longitudinal dynamic behavior between locomotives and coaches caused by spring and damping characteristics of couplers and center pivots; characteristic curves of traction and braking. To validate the analysis results, tests were conducted in the same driving and braking condition. Comparison of longitudinal acceleration between simulation and test results shows a good agreement. To minimize the jerking phenomena, lots of dynamic simulations were conducted with varying driving/braking effort curve. From the results of simulations, an efficient and economic way to reduce jerking phenomena was found to be to reduce slope of tractive effort curve and synchronize braking time between locomotives and coaches. Test results show that this way could reduce the jerking Phenomena. To express jerkins Phenomena quantitatively, maximum peak to peak values of acceleration were used.

  • PDF

A Study on the Selection of Train Operationg Mode Minimizing the Running Energy Consumption (전동열차 운행에너지를 최소화 하는 운전모드 결정)

  • Kim, Yong-Hyun;Kim, Dong-Hwan;Kim, Chi-Tae
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.119-124
    • /
    • 2005
  • Decision of operation performance mode to minimize the energy consumption of urban rail vehicle. This paper analyses how much acceleration and deceleration of urban rail vehicle should be applied andhow to choose an operation mode to minimize energy consumption when train runs between station within the fixed operation time. The decided operation pattern satisfying the minimum energy consumption becomes a target trajectory and a basis for the controller design criteria. To make this goal it grasps the characteristics of urban rail vehicle, realize operation energy model of urban rail vehicle and verify the accuracy of embodied model the Matlab simulation with the same operation result of real route. It searches for operation pattern to minimize operation energy by changing the acceleration and deceleration on the imaginative route and proposes operation pattern minimizing energy consumption by applying real operation data between Dolgogee-Sukgye section of Seoul Metropolitan Subway Line 6.

  • PDF

Missile Flyout Launch Dynamic Analysis Including Ship Motion (함정운동을 고려한 유도탄의 발사초기 동력학 해석)

  • 안진수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.37-49
    • /
    • 2002
  • In this paper, flyout stability of missile that is launched in inclined launcher using sabots is analyzed. To include missile bending motion during flyout, FEA model of missile is converted into eight concentrated mass and equivalent stiffness matrix. Six d.o.f ship motion that have influence on flyout stability is modeled and missile firing time is modeled as probability variable to take arbitrary ship attitude into account. Gap between missile and sabot is modeled as normal distribution probability variable and Monte Carlo simulation is performed. As results, the coriolis acceleration effects by ship motion are analyed and statistical results of missile pitch rate are shown.

Analysis of Cell Latch-up Effect in SRAM Device (SRAM 소자의 Cell Latch-up 현상 분석)

  • Lee Jun-Ha;Lee Hoong-Joo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.11a
    • /
    • pp.203-205
    • /
    • 2004
  • A soft error rate neutrons is a growing problem for terrestrial integrated circuits with technology scaling. In the acceleration test with high-density neutron beam, a latch-up prohibits accurate estimations of the soft error rate (SER). This paper presents results of analysis for the latch-up characteristics in the circumstance corresponding to the acceleration SER test for SRAM. Simulation results, using a two-dimensional device simulator, show that the deep p-well structure has better latch-up immunity compared to normal twin and triple well structures. In addition, it is more effective to minimize the distance to ground power compared with controlling a path to the $V_{DD}$ power.

  • PDF

Design of a Robust Adaptive Control Scheme for Longitudinal Motion of Vehicles (직진 주행 차량의 강인 적응제어 구조설계)

  • Kim, Dong-Hun;Yang, Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.1
    • /
    • pp.31-37
    • /
    • 2001
  • A robust adaptive technique for the longitudinal control of a platoon of automated vehicles is presented. A nonlinear model is used to represent the dynamics of each vehicle within the platoon. The external disturbances such as wind gust and a disturbance term due to engine transmission variations and so on are considered. The state observer is used to avoid direct measurement of the relative velocity or acceleration between the controlled and leading vehicles or the controlled vehicles's acceleration. The proposed controller guarantees to recover platoon stability in operation even if a speed dependent spacing policy is adopted, which incorporates a constant time headway in addition to the constant distance. It is shown that the proposed observer is exponentially stable, and the at the robust adaptive controller is stable. The simulation results demonstrate excellent tracking even in the presence of disturbances.

  • PDF

Generalized input estimation for maneuvering target tracking (기동 표적 추적을 위한 일반화된 입력 추정 기법)

  • 황익호;이장규;박용환
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.139-145
    • /
    • 1996
  • The input estimation method estimates maneuvering input acceleration in order to track a maneuvering target. In this paper, the optimal input estimator is derived by choosing the MAP hypothesis among maneuvering input transition hypotheses under the assumption that a maneuvering input acceleration is a semi-Markov process. The optimal input estimation method cannot be realized because the optimal filter should consider every maneuver onset time hypothesis from filter starting time to current time which increase rapidly. Hence the suboptimal filter using a sliding window is proposed. Since the proposed method can consider all hypotheses of input transitions inside the window, it is general enough to include Bogler's input estimation method. Simulation results show, however, that we can obtain a good performance even when the filter considering just one input transition in the window is used. (author). 9 refs., 3 figs., 1 tab.

  • PDF

A Biodynamic Simulation under High Gravity Maneuvering (고중력 가속기동하에서의 생체동역학적 모의실험)

  • Lee, Chang-Min;Park, Sei-Kwon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 1992
  • The purpose of this paper is to investigate the dynamic situation of the biomechanical responses of a pilot that occur before the black out during high gravity maneuvering. The computer biodynamic simulations using the Articulated Total Body(ATB) model show the following results : 1) the center of gravity(c. g) offsets of a helmet have significant effects on the head deflection angle which is closely connected with the head down : 2) the average and maximum gravity forces are smaller in the curvilinear type of an acceleration than in the straight type of the acceleration, and it is applied to the case of the head deflection angle. We suggest that the new concept of protective device should be necessary to prevent the head down during high gravity maneuvering.

  • PDF