• Title/Summary/Keyword: Simulation Acceleration

Search Result 945, Processing Time 0.03 seconds

An Application of Sampling to Determine a Proper Rate of Probe Vehicles for Macroscopic Traffic Flow Monitoring Indices (거시교통류 모니터링 지표산출을 위한 적정 프로브차량 비율 결정에 관한 연구)

  • Shim, Jung-Suk;Heo, Hyun-Moo;Eom, Ki-Jong;Lee, Chung-Won;Ahn, Su-Han
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.2
    • /
    • pp.33-40
    • /
    • 2010
  • In this paper, we consider three macroscopic traffic flow monitoring indices, Travel Time Index(TTI), Acceleration Noise(AN) and Two Fluid(TF) and investigate how to determine a proper rate of probe cars for producing reliable values of these indices. For the analysis, we use classical sampling theories and provide numbers of probe rates using simulation data.

Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method

  • Lee, Kyoung-Rok;Koo, Weoncheol;Kim, Moo-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.513-528
    • /
    • 2013
  • A floating Oscillating Water Column (OWC) wave energy converter, a Backward Bent Duct Buoy (BBDB), was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT) technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL) approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.

Torque Control of DC Motor Using Velocity Profile Based Acceleration/Deceleration Control (속도 프로파일 기반의 가감속제어를 통한 DC 모터의 토크제어)

  • Lee, Jong-Yeon;Hyun, Chang-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.36-41
    • /
    • 2012
  • This paper presents torque control of DC motor using the velocity profile based acceleration/deceleration controller for automatic guided vehicles (AGVs). This technique has some advantage; to reduce the damage of motors and to extend the life time of motors. First, we generate velocity profiles for three cases and design the state feedback controller using the generated velocity profile as a reference. The state feedback controller has servo system for solving regulation problem. For the verification, we apply the proposed method to control a cart position and shows some simulation result.

Accurate Control Position of Belt Drives under Acceleration and Velocity Constraints

  • Jayawardene, T.S.S.;Nakamura, Masatoshi;Goto, Satoru
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.474-483
    • /
    • 2003
  • Belt drives provide freedom to position the motor relative to the load and this phenomenon enables reduction of the robot arm inertia. It also facilitates quick response when employed in robotics. Unfortunately, the flexible dynamics deteriorates the positioning accuracy. Therefore, there exists a trade-off between the simplicity of the control strategy to reject time varying disturbance caused by flexibility of the belt and precision in performance. Resonance of the system further leads to vibrations and poor accuracy in positioning. In this paper, accurate positioning of a belt driven mechanism using a feed-forward compensator under maximum acceleration and velocity constraints is proposed. The proposed method plans the desired trajectory and modifies it to compensate delay dynamics and vibration. Being an offline method, the proposed method could be easily and effectively adopted to the existing systems without any modification of the hardware setup. The effectiveness of the proposed method was proven by experiments carried out with an actual belt driven system. The accuracy of the simulation study based on numerical methods was also verified with the analytical solutions derived.

Development of Active Intake Noise Control Algorithm for Improvement Control Performance under Rapid Acceleration and Disturbance (L-Point Running Average Filter를 이용한 급가속 흡기계의 능동소음제어 성능향상을 위한 알고리즘 개발)

  • 전기원;조용구;오재응;이정윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.780-783
    • /
    • 2004
  • Recently Intake noise has been extensively studied to reduce the engine noise. In order to diminish intake noise several resonators were added to the intake system. However this can cause a reduction of engine output power and an increase of fuel consumption. In this study, active noise control simulation of the Filtered-x LMS algorithm is applied real instrumentation intake noise data under rapid acceleration because intake noise is more excessively increased under the such a harsh condition. But the FXLMS algorithm has poor control performance when the system is disturbed. Thus modified FXLMS algorithm using L-point running average filter is developed to improve the control performance under the rapid acceleration and disturbance. The noise reduction quantity of modified Filtered-x LMS algorithm is more than original one in two cases. In the case of control for real instrumentation intake noise data, maximum residual noise of modified FXLMS algorithm is 2.5 times less than applied the FXLMS and also in the case of disturbed, the modified FXLMS algorithm shows excellent control performance but FXLMS algorithm cat not control.

  • PDF

Anti-Swing Control Algorithm for the Automation of Overhead Crane (천정크레인 설비의 자동화를 위한 반진동 제어 알고리즘)

  • 배상욱;노철균;배영호;이득기
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.2
    • /
    • pp.49-57
    • /
    • 2003
  • In this paper, is proposed an anti-swing control algorithm for the automation of overhead crane. The algorithm consists of three parts, the FCL with compensatory FLC which generates acceleration, velocity and position reference to reduce swing angle and acceleration feedback controller which feedback control errors. Especially the algorithm dose not need angular sensor which detect swing angle of payload and requires high cost. By the simulation study and experiment with prototype crane, we showed the usefulness of the proposed algorithm.

Adaptive Observer Based Longitudinal Control of Vehicles

  • Rhee, Hyoung-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.3
    • /
    • pp.266-272
    • /
    • 2004
  • In this paper, an observer-based adaptive controller is proposed to control the longitudinal motion of vehicles. The standard gradient method will be used to estimate the vehicle parameters such as mass, time constant, etc. The nonlinear model between the driving force and the vehicle acceleration will be chosen to design the state observer for the vehicle velocity and acceleration. It will be shown that the proposed observer is exponentially stable, and that the adaptive controller proposed in this paper is stable by the Lyapunov function candidate. It will be proved that the errors of the relative distance, velocity and acceleration converge to zero asymptotically fast, and that the overall system is also asymptotically stable. The simulation results are presented to investigate the effectiveness of the proposed method.

  • PDF

The Effect of Density Gradient on the Self-modulated Laser Wakefield Acceleration with Relativistic and Kinetic Effects

  • Yoo, Seung-Hoon;Kim, Jae-Hoon;Kim, Jong-Uk;Seo, Ju-Tae;Hahn, Sang-June
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.42-47
    • /
    • 2009
  • The propagation of an intense laser pulse through an upward density-gradient plasma in a self-modulated laser wakefield acceleration (SM-LWFA) is investigated by using particle-in-cell (PIC) simulations. In the fully relativistic and kinetic PIC simulations, the relativistic and kinetic effects including Landau damping enhance the electron dephasing. This electron dephasing is the most important factor for limiting the energy of accelerated electrons. However, the electron dephasing, which is enhanced by relativistic and kinetic effects in the homogeneous plasma, can be forestalled through the detuning process arising from the longitudinal density gradient. Simulation results show that the detuning process can effectively maintain the coherence of the laser wake wave in the spatiotemporal wakefield pattern, hence considerable energy enhancement is achievable. The spatiotemporal profiles are analyzed for the detailed study on the relativistic and kinetic effects. In this paper, the optimum slope of the density gradient for increasing electron energy is presented for various laser intensities.

Site specific ground motion simulation and seismic response analysis for microzonation of Kolkata

  • Roy, Narayan;Sahu, R.B.
    • Geomechanics and Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-18
    • /
    • 2012
  • The spatial variation of ground motion in Kolkata Metropolitan District (KMD) has been estimated by generating synthetic ground motion considering the point source model coupled with site response analysis. The most vulnerable source was identified from regional seismotectonic map for an area of about 350 km radius around Kolkata. The rock level acceleration time histories at 121 borehole locations in Kolkata for the vulnerable source, Eocene Hinge Zone, due to maximum credible earthquake (MCE) moment magnitude 6.2 were generated by synthetic ground motion model. Soil investigation data of 121 boreholes were collected from the report of Soil Data Bank Project, Jadavpur University, Kolkata. Surface level ground motion parameters were determined using SHAKE2000 software. The results are presented in the form of peak ground acceleration (PGA) at rock level and ground surface, amplification factor, and the response spectra at the ground surface for frequency 1.5 Hz, 3 Hz, 5 Hz and 10 Hz and 5% damping ratio. Site response study shows higher PGA in comparison with rock level acceleration. Maximum amplification in some portion in KMD area is found to be as high as 3.0 times compared to rock level.

Analysis of Heat Loss Due to Time Dependent Aging of Insulation Applied to Office Building (업무용 건축물에 적용된 단열재의 경년열화에 따른 열손실량 분석)

  • Lee, Do-Hyung;Nah, Hwan-Seon
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.5
    • /
    • pp.65-75
    • /
    • 2017
  • In this study, the change of heat loss due to the degree of deterioration of the XPS insulation in KEPCO's office buildings is analyzed. The acceleration aging test of the XPS insulation was carried out according to the test method A of KS M ISO 11561: 2009. The performance of the insulation was analyzed by applying it to the three - dimensional steady state heat transfer analysis program. The acceleration aging test of the XPS insulation, show that the thermal resistance performance decreased by 1.44% at the A regional headquarters, 0.85% at the B regional headquarters, 6.41% at the C branch office, 7.76% at the D regional headquarters, 8.51% at the E branch office, and by 8.54% at the F branch office respectively. Using simulation, we determined that the thermal resistance value of E branch office decreased by 8.04%, while its heat loss increased by 8.52%. At A regional headquarters, the thermal resistance decreased by 1.38%, and the heat loss increased by 1.51%. At D regional headquarters, these value are 6.82% and 7.17%, respectively.