• Title/Summary/Keyword: Simulation, Meta Model

Search Result 53, Processing Time 0.025 seconds

OPTIMIZATION OF A DRIVER-SIDE AIRBAG USING KRIGING AND TABU SEARCH METHODS (크리깅과 타부탐색법을 이용한 운전석 에어백의 최적설계)

  • Kim, Jeung-Hwan;Lee, Kwom-Hee;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1035-1040
    • /
    • 2004
  • In the proto design stage of a new car, the performance of an occupant protection system is often evaluated by CAE instead of the real test. CAE predicts and recommends the appropriate design values hence reducing the number of the real tests. However, the existing researches using CAE in predicting the performances do not consider the uncertainties of parameters, in which inconsistency between the actual test results and CAE exists. In this research, the optimization procedure of a protection system such as airbag and load limiter is suggested for the frontal collision. The DACE modeling known as Kriging interpolation is introduced to obtain the meta model of the system followed by the tabu search method to determine a global optimum. Finally, the distribution of a suggested design is determined through the Monte-Carlo Simulation.

  • PDF

A comparison of three multi-objective evolutionary algorithms for optimal building design

  • Hong, Taehoon;Lee, Myeonghwi;Kim, Jimin;Koo, Choongwan;Jeong, Jaemin
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.656-657
    • /
    • 2015
  • Recently, Multi-Objective Optimization of design elements is an important issue in building design. Design variables that considering the specificities of the different environments should use the appropriate algorithm on optimization process. The purpose of this study is to compare and analyze the optimal solution using three evolutionary algorithms and energy modeling simulation. This paper consists of three steps: i)Developing three evolutionary algorithm model for optimization of design elements ; ii) Conducting Multi-Objective Optimization based on the developed model ; iii) Conducting comparative analysis of the optimal solution from each of the algorithms. Including Non-dominated Sorted Genetic Algorithm (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO) and Random Search were used for optimization. Each algorithm showed similar range of result data. However, the execution speed of the optimization using the algorithm was shown a difference. NSGA-II showed the fastest execution speed. Moreover, the most optimal solution distribution is derived from NSGA-II.

  • PDF

xPMP : UML-based High-Level Modeling of Policy-Driven Management Applications (xPMP - 정책 기반 관리 어플리케이션의 상위 단계 모델링)

  • Tran, Doan Thanh;Choi, Eun-Mi
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.209-218
    • /
    • 2008
  • The Unified Modeling Language becomes popular to specify, visualize, construct, and document software-intensive systems, especially in supporting the design phase of software engineering. Most of designs in UML have focused on firm designing of software system structure. Recently, some researches have raised additional demands in many emerging complex software systems, such as aspect-oriented design. In this paper, we work on the dynamic aspect of policy-driven architecture. We present a UML-based high-level modeling of policy-driven management which is applicable in various application domains. In order to manage a number of activities of applications, dynamics and flexibility should be supported with policies consistently on different resources in the same context. Thus, a methodology of meta-modeling to represent dynamic aspects of policy-driven architecture is studied. Based on our methodology, we could achieve meta-modeling to develop a number of policy-driven management applications.

  • PDF

Probing α/β Balances in Modified Amber Force Fields from a Molecular Dynamics Study on a ββα Model Protein (1FSD)

  • Yang, Changwon;Kim, Eunae;Pak, Youngshang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1713-1719
    • /
    • 2014
  • 1FSD is a 28-residue designed protein with a ${\beta}{\beta}{\alpha}$ motif. Since this protein displays most essential features of protein structures in such a small size, this model protein can be an outstanding system for evaluating the balance in the propensity of the secondary structures and the quality of all-atom protein force fields. Particularly, this protein would be difficult to fold to its correct native structure without establishing proper balances between the secondary structure elements in all-atom energy functions. In this work, a series of the recently optimized five amber protein force fields [$ff03^*$, $f99sb^*$-ildn, ff99sb-${\phi}^{\prime}$-ildn, ff99sb-nmr1-ildn, ff99sb-${\Phi}{\Psi}$(G24, CS)-ildn] were investigated for the simulations of 1FSD using a conventional molecular dynamics (MD) and a biased-exchange meta-dynamics (BEMD) methods. Among those tested force fields, we found that ff99sb-nmr1-ildn and ff99sb-${\Phi}{\Psi}$(G24, CS)-ildn are promising in that both force fields can locate the native state of 1FSD with a high accuracy (backbone rmsd ${\leq}1.7{\AA}$) in the global free energy minimum basin with a reasonable energetics conforming to a previous circular dichroism (CD) experiment. Furthermore, both force fields led to a common set of two distinct folding pathways with a heterogeneous nature of the transition state to the folding. We anticipate that these force fields are reasonably well balanced, thereby transferable to many other protein folds.

Optimization Design of Hydrofoil Shape and Flapping Motion in AUV(Autonomous Underwater Vehicle) (플래핑 운동을 적용한 자율무인잠수정(AUV)의 날개형상 및 운동 최적설계)

  • Kim, Il-Hwan;Choi, Jung-Sun;Park, Kyung-Hyun;Lee, Do-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.24-31
    • /
    • 2013
  • The motion of living organisms such as birds, fishes, and insects, has been analyzed for the purpose of the design of MAV(Micro Air Vehicle) and NAV(Nano Air Vehicle). In this research, natural motion was considered to be applied to the determination of the geometry and motion of AUV(Autonomous Underwater Vehicle). The flapping motion of a number of hydrofoil shapes in AUV was studied, and at the same time, the optimization of the hydrofoil shape and flapping motion was executed that allow the highest thrust and efficiency. The harmonic motion of plunging and pitching of NACA 4 digit series models, was used for the numerical analysis. The meta model was made by using the kriging method in Optimization method and the experimental points of 49 were extracted for the OA(Orthogonal array) in DOE(Design of experiments). Parametric study using this experimental points was conducted and the results were applied to MGA(Micro Genetic Algorithm). The flow simulation model was validated to be an appropriate tool by comparing with experimental data and the optimized shape and motion of AUV was turned out to produce highest thrust and efficiency.

Study on Ship Motion Analysis of Turret-Moored LNG FSRU Compared with Model Test (터렛 계류 LNG FSRU의 운동 해석 및 모형시험 검토)

  • Jee, Hyun-Woo;Park, Byung-Joon;Jeong, Seung-Gyu;Choi, Young-Dal;Hong, Seok-Won;Sung, Hong-Gun;Cho, Seok-Kyu
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.127-132
    • /
    • 2011
  • In this paper, hydrodynamic performance of FSRU which is designed to operate in North America East Coast assessed. In order to estimate the dynamic performance, the numerical analysis is carried out based on a time domain simulation program to solve the coupled dynamics for floater and mooring lines which is as well known program as DNV SESAM package. The target operating area is East coast of North America and the model test was carried out based on the meta-ocean data of the area. The mooring analysis is only considered wave without other environment condition at this time. The results of the numerical analysis show the under-estimated results at the higher wave height condition. But the tendency is very similar. Also, the motion response show good agreement compared with model test.

  • PDF

The Multi-Objective Optimal Design of Vehicle Component Manufacturing System with Simulation and ANP (시뮬레이션과 네트워크 분석법을 이용한 자동차 부품 가공시스템의 다목적 최적운영설계)

  • Kim, Woo-Kyun;Kim, Youn-Jin;Lee, Hong-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4697-4706
    • /
    • 2010
  • This paper suggested the optimal operating design method using simulation and ANP(Analytic Network Process) for mass-customization in the automotive component manufacturing industry. For this, first of all, we built the simulation model including various and complex factors in the field, and estimated the meta-model by RSM(Response Surface Method). Secondly using ANP, we calculated the weight of relative importance of evaluation factors gathered from decision makers. And then, we proposed the optimal operation designs by MOGA(Multi-Objective Genetic Algorithm), analyzed results of them. Moreover, by comparing the results with the consequences using AHP(Analytic Hierarchy Process), we showed its superiority of suggested method to the manner using AHP, because it reflects inner, outer dependency, and inter-relation among judgement factors. In conclusion, through this process, we can present the better way to serve mover effective, precise, and accurate information to decision makers when they build operation design for mass-customization system as automotive parts production system.

Study to Optimize the Concurrent Spare Parts of Multiple Function Weapon System using Failure-Function Matrix (고장-기능 간 관계도를 이용한 다 기능 무기체계의 동시조달수리부속 최적화 연구)

  • Kim, Kyung-Rok;Choi, Hyo-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5260-5266
    • /
    • 2015
  • To develop weapon system, Concurrent Spare Parts(CSP) is one of the important somethings in terms of Intergrated Logistics System(ILS). CSP is very important to improve the availability of weapon system, and various research about CSP are performed. However, most of the research does not consider the effects between sub-item's failure and weapon system's multiple function. In other words, if sub-item's failure does not seriously influence weapon system's specific function, the point, not necessarily to replace sub-item, is not considered. Therefore, the method to calculate CSP based on above consideration is written by failure-function matrix in this paper. The study follows the procedure below. First, it's to define the operation and maintenance procedure of weapon system. Second, failure-function matrix is developed. Third, simulation model is desinged by input data. Finally, The quantity of CSP is calculated by simulation and evolution strategy, meta-model. This study suggests new research direction to calculate CSP.

분석용 정밀 워게임모형의 통계적 진단 및 활용

  • 김윤태;고원;박혜련
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.117-121
    • /
    • 2004
  • 분석용 정밀 워게임 시뮬레이션 모형에서는 '모형운영 결과와 실제(또는 실험) 결과를 비교' 하는 통상적인 타당성 척도의 적용이 불가능함에 따라 워게임모형 운영환경에 적합한 새로운 개념의 타당성 척도로서 VEA(Validity for Exploratory Analysis), VSA(Validity subject to Assumption) 등의 개념을 도입하고 이를 탐색적으로 점검하는 방안을 제시한다. 분석용 워게임모형 활용에 있어 또 하나의 걸림돌은 1)시나리오 및 상황의 가변성, 2)무기체계 및 장비 성능에 대한 불확실성, 3)묘사범위 제한 및 논리의 부정확성으로 인한 오류 등으로 엄청난 불확실성(uncertainty)을 기본적으로 내포함에 따라 구체적 의사결정을 위한 종합적 결론 도출이 어렵다는 점이다. 본 연구에서는 이를 메타모델(Meta model) 즉 워게임모형 입출력 자료의 관계를 묘사한 통계적 모형을 구축하고 이를 기반으로 다양한 불확실성 하에서 관심변수간의 관계를 종합적으로 도출하고자 하는 '관련공간모의(Relevant Simulation)' 방안을 제시한다. 이와 같은 방안들은 SVAP(Statistical Validation and Aggregation Procedure)라는 하나의 종합된 절차로서 제시된다.

  • PDF

Reviews of Bus Transit Route Network Design Problem (버스 노선망 설계 문제(BTRNDP)의 고찰)

  • Han, Jong-Hak;Lee, Seung-Jae;Lim, Seong-Su;Kim, Jong-Hyung
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.35-47
    • /
    • 2005
  • This paper is to review a literature concerning Bus Transit Route Network Design(BTRNDP), to describe a future study direction for a systematic application for the BTRNDP. Since a bus transit uses a fixed route, schedule, stop, therefore an approach methodology is different from that of auto network design problem. An approach methodology for BTRNDP is classified by 8 categories: manual & guideline, market analysis, system analytic model. heuristic model. hybrid model. experienced-based model. simulation-based model. mathematical optimization model. In most previous BTRNDP, objective function is to minimize user and operator costs, and constraints on the total operator cost, fleet size and service frequency are common to several previous approach. Transit trip assignment mostly use multi-path trip assignment. Since the search for optimal solution from a large search space of BTRNDP made up by all possible solutions, the mixed combinatorial problem are usually NP-hard. Therefore, previous researches for the BTRNDP use a sequential design process, which is composed of several design steps as follows: the generation of a candidate route set, the route analysis and evaluation process, the selection process of a optimal route set Future study will focus on a development of detailed OD trip table based on bus stop, systematic transit route network evaluation model. updated transit trip assignment technique and advanced solution search algorithm for BTRNDP.