• Title/Summary/Keyword: Simulation, Meta Model

Search Result 52, Processing Time 0.022 seconds

A Study for Integrated Component Meta-model for Component Design in CBD (CBD 상에서 컴포넌트 설계를 위한 통합 컴포넌트 메타 모델에 관한 연구)

  • 조은숙
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.3
    • /
    • pp.95-102
    • /
    • 2003
  • Lately CBD methodologies like as CBD96, Catalysis, Fusion, and SCIPIO have been introduced. These methodologies has their own proprietary component reference model. Using proprietary reference model falls interoperability among methodologies. Furthermore it can cause confusion and difficulty for component developers, In this paper, we propose a integrated component meta-model for support consistency and interoperability among component designs. Also, we compare our proposed meta model to existing component reference model by using component's characteristics. We expect that it is easy to add new meta model elements and extends meta-model by using integrated component meta-model.

  • PDF

A Study for Integrated Component Meta-model for Component Design in CBD (CBD 상에서 컴포넌트 설계를 위한 통합 컴포넌트 메타 모델에 관한 연구)

  • 조은숙
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.06a
    • /
    • pp.107-113
    • /
    • 2003
  • Lately CBD methodologies like as CBD96, Catalysis, fusion, and SCIPIO have been introduced. These methodoloties has their own proprietary component reference model. Using proprietary reference model falls interoperability among methodologies. Furthermore it can cause confusion and difficulty for component developers. In this paper, we propose a integrated component meta-model for support consistency and interoperability among component designs. Also, we compare our proposed meta model to existing component reference model by using component's characteristics. We expect that it is easy to add new meta model elements and extends meta-model by using integrated component meta-model.

  • PDF

Reliability Analysis for Structure Design of Automatic Ocean Salt Collector Using Sampling Method of Monte Carlo Simulation

  • Song, Chang Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.316-324
    • /
    • 2020
  • This paper presents comparative studies of reliability analysis and meta-modeling using the sampling method of Monte Carlo simulation for the structure design of an automatic ocean salt collector (AOSC). The thickness sizing variables of structure members are considered as random variables. Probabilistic performance functions are selected from strength performances evaluated via the finite element analysis of an AOSC. The sampling methods used in the comparative studies are simple random sampling and Sobol sequences with varied numbers of sampling. Approximation methods such as the Kriging model is applied to the meta-model generation. Reliability performances such as the probability failure and distribution are compared based on the variation of the sampling method of Monte Carlo simulation. The meta-modeling accuracy is evaluated for the Kriging model generated from the Monte Carlo simulation and Sobol sequence results. It is discovered that the Sobol sequence method is applicable to not only to the reliability analysis for the structural design of marine equipment such as the AOSC, but also to Kriging meta-modeling owing to its high numerical efficiency.

Evaluation of the Uncertainties in Rainfall-Runoff Model Using Meta-Gaussian Approach (Meta-Gaussian 방법을 이용한 강우-유출 모형에서의 불확실성 산정)

  • Kim, Byung-Sik;Kim, Bo-Kyung;Kwon, Hyun-Han
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.49-64
    • /
    • 2009
  • Rainfall-runoff models are used for efficient management, distribution, planning, and design of water resources in accordance with the process of hydrologic cycle. The models simplify the transition of rainfall to runoff as rainfall through different processes including evaporation, transpiration, interception, and infiltration. As the models simplify complex physical processes, gaps between the models and actual rainfall events exist. For more accurate simulation, appropriate models that suit analysis goals are selected and reliable long-term hydrological data are collected. However, uncertainty is inherent in models. It is therefore necessary to evaluate reliability of simulation results from models. A number of studies have evaluated uncertainty ingrained in rainfall-runoff models. In this paper, Meta-Gaussian method proposed by Montanari and Brath(2004) was used to assess uncertainty of simulation outputs from rainfall-runoff models. The model, which estimates upper and lower bounds of the confidence interval from probabilistic distribution of a model's error, can quantify global uncertainty of hydrological models. In this paper, Meta-Gaussian method was applied to analyze uncertainty of simulated runoff outputs from $Vflo^{TM}$, a physically-based distribution model and HEC-HMS model, a conceptual lumped model.

  • PDF

A Study on Performance Enhancement in Simulation Fidelity Using a Meta Model (메타모델(Meta Model)을 활용한 시뮬레이터 구현충실도 향상 연구)

  • Cho, Donghyurn;Kwon, Kybeom;Seol, Hyunju;Myung, Hyunsam;Chang, YoungChan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.10
    • /
    • pp.884-892
    • /
    • 2014
  • In this paper, a meta model using neural network substituting for the simulator aerodynamic database is proposed to improve simulation fidelity near the critical flight area and real-time performance. It is shown that the accuracy of the meta model is relatively higher than the existing table lookup methods for arbitrary nonlinear database and the calculation speed is also improved for a specific F-16 maneuver simulation. The increase in the number of hidden nodes in the meta model for better accuracy of database representations causes a delay in function generation due to increased time required for computing exponential functions. In order to make up this drawback, we additionally study the fast exponential function method.

A Study on ROK Military PBL Using Simulation and Meta Model (시뮬레이션과 메타 모델을 이용한 한국군 성과기반군수 연구)

  • Won, Bong Yeon;Lee, Sang Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.1
    • /
    • pp.81-91
    • /
    • 2019
  • The ROK military uses Performance Based Logistics(PBL) as one of the ways to utilize civilian resources and advanced techniques. However, the Korean PBL is mainly focused on purchasing and repairing parts, which is not contributing to the improvement of the availability of overall system. The objective of this study is to suggest the methodology to evaluate the PBL metrics using the simulation and meta model. A meta model is a regression model to analyze the effect of the PBL through simulating various scenarios with performance metrics. As a result, if the PBL is limited to the part level, the performance has little influence on the availability of overall system. In addition, analysis using the meta model shows that it cannot achieve the performance targets when the same metrics are applied to various items without considering the characteristics of the applied items. Therefore, in order to improve availability, PBL coverage should be extended to a system level that includes key components that have a large impact on availability. If multiple items are included in the PBL coverage, the metrics should be applied differently, taking into account the characteristics of each item.

The Impact of Aircraft Spare Engine and Module Inventory Level on Wartime Operational Availability (항공기 예비엔진 및 모듈 재고수준이 전시 운용가용도에 미치는 영향)

  • Kim, Jinho;Lee, Sangjin;Jung, Sungtae
    • Korean Management Science Review
    • /
    • v.31 no.2
    • /
    • pp.33-48
    • /
    • 2014
  • It is important to maintain on operational availability of aircraft during wartime. The KF-16 fighter, the backbone of the ROKAF (Republic Of Korea Air Force), has a single engine. Therefore, the engine has a critical influence on operational availability. The purpose of this study is to estimate optimal levels of spare part inventories concerning both engines and modules. That is provided by linear programming methods utilizing a developed meta-model. For drawing out the meta-model, we develop a simulation model which can consider wartime demands. In the previous study, $2^k$ factorial design method is used to check the influence of each independent variable. That method requires relatively many scenarios because every extreme value combination of independent variables should be checked. However, this study adopts NOLH (Nearly Orthogonal Latin Hypercube) as an experimental design. By adopting NOLH, this study increases not only efficiency but also accuracy. That is proven by comparing the validity of the developed meta-model on both experimental designs. This study also utilizes the OptQuest simulation tool in ARENA to derive the optimal level of spare stocks. By comparing the result of OptQuest to that of the developed meta-model, the validity of this study is secured.

A Case Study for Finding an Efficient M&S Meta Model through Sequential Response Surface Methodology (축차적 반응표면 분석을 통한 M&S 메타모형 구축에 관한 사례 연구)

  • Kim, Sang-Ik;Kim, Yong-Dai;Lim, Yong-Bin;Choi, Ki-Heon;Kim, Jeong-Eun
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.1
    • /
    • pp.49-59
    • /
    • 2012
  • In computer simulation models the output from the computer code is often deterministic, i.e., running the code twice with the same values for the input variables would give the same output. It is discussed why the response surface method with polynomial approximation for the true response function is a good approximation to the computer experiments model. A sequential strategy to find the proper reduced quadratic polynomial model is illustrated with a case study in the military war game computer simulation model.

Control for Manipulator of an Underwater Robot Using Meta Reinforcement Learning (메타강화학습을 이용한 수중로봇 매니퓰레이터 제어)

  • Moon, Ji-Youn;Moon, Jang-Hyuk;Bae, Sung-Hoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.95-100
    • /
    • 2021
  • This paper introduces model-based meta reinforcement learning as a control for the manipulator of an underwater construction robot. Model-based meta reinforcement learning updates the model fast using recent experience in a real application and transfers the model to model predictive control which computes control inputs of the manipulator to reach the target position. The simulation environment for model-based meta reinforcement learning is established using MuJoCo and Gazebo. The real environment of manipulator control for underwater construction robot is set to deal with model uncertainties.

Efficient Generation of Space Filling Scenarios for Computer Experiments (공간채움 조건을 만족하는 컴퓨터 실험 시나리오의 효율적 생성)

  • Yim, Dong-Soon;Kim, Jung-Hoon;Choi, Bong-Whan
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.3
    • /
    • pp.15-23
    • /
    • 2013
  • In general, simulation models are effectively used in the field of engineering design. The experiment with simulation models to obtain optimal design parameters, however, is a time-consuming task and requires a lot of resources. Hence, meta-models representing the relationships between input variables and performance measures are exploited to efficiently determine the value of design parameters. To construct a meta-model, a number of simulation executions with sample scenarios are required. The number and quality of sample scenarios determine not only the level of efficiency in constructing the meta-model but also accuracy of the model. Space-filling condition is regarded to be an important condition for the quality of scenarios. This paper proposes sample scenario generation methods based on space-filling measures such as maxmin, Audze-Eglais, and centered L2-discrepancy. The performance of these scenario generation methods are evaluated through experiments.