• Title/Summary/Keyword: Simulated weather

Search Result 310, Processing Time 0.026 seconds

Energy Modeling of a Supertall Building Using Simulated 600 m Weather File Data

  • Irani, Ali;Leung, Luke;Sedino, Marzia
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.2
    • /
    • pp.101-106
    • /
    • 2019
  • Assessing the energy performance of supertall buildings often does not consider variations in energy consumption due to the change of environmental conditions such as temperature, pressure, and wind speed associated with differing elevations. Some modelers account for these changing conditions by using a conventional temperature lapse rate, but not many studies confirm to the appropriateness of applying it to tall buildings. This paper presents and discusses simulated annual energy consumption results from a 600 m tall skyscraper floor plate located in Dubai, UAE, assessed using ground level weather data, a conventional temperature lapse rate of $6.5^{\circ}C/km$, and more accurate simulated 600 m weather data. A typical office floorplate, with ASHRAE 90.1-2010 standards and systems applied, was evaluated using the EnergyPlus engine through the OpenStudio graphical user interface. The results presented in this paper indicate that by using ground level weather data, energy consumption at the top of the building can be overestimated by upwards of 4%. Furthermore, by only using a lapse rate, heating energy is overestimated by up to 96% due to local weather phenomenon such as temperature inversion, which can only be conveyed using simulated weather data. In addition, sizing and energy consumption of fans, which are dependent both on wind and atmospheric pressure, are not accurately captured using a temperature lapse rate. These results show that that it is important, with the ever increasing construction of supertall buildings, to be able to account for variations in climatic conditions along the height of the building. Adequately modeling these conditions using simulated weather data will help designers and engineers correctly size mechanical systems, potentially decreasing overall building energy consumption, and ensuring that these systems are able to provide the necessary indoor conditions to maintain occupant comfort levels.

An Analysis of Observed and Simulated Wind in the Snowfall Event in Yeongdong Region on 8 February 2020 (2020년 2월 8일 영동지역 강설 사례 시 관측과 수치모의 된 바람 분석)

  • Kim, Hae-Min;Nam, Hyoung-Gu;Kim, Baek-Jo;Jee, Joon-Bum
    • Atmosphere
    • /
    • v.31 no.4
    • /
    • pp.433-443
    • /
    • 2021
  • The wind speed and wind direction in Yeongdong are one of the crucial meteorological factors for forecasting snowfall in this area. To improve the snowfall forecast in Yeongdong region, Yeongdong Extreme Snowfall-Windstorm Experiment, YES-WEX was designed. We examined the wind field variation simulated with Local Data Assimilation and Prediction System (LDAPS) using observed wind field during YES-WEX period. The simulated wind speed was overestimated over the East Sea and especially 2 to 4 times in the coastal line. The vertical wind in Yeongdong region, which is a crucial factor in the snowfall forecast, was not well simulated at the low level (850 hPa~1000 hPa) until 12 hours before the forecast. The snowfall distribution was also not accurately simulated. Three hours after the snowfall on the East Sea coast was observed, the snowfall was simulated. To improve the forecast accuracy of snowfall in Yeongdong region, it is important to understand the weather conditions using the observed and simulated data. In the future, data in the northern part of the East Sea and the mountain slope of Taebaek observed from the meteorological aircraft, ship, and drone would help in understanding the snowfall phenomenon and improving forecasts.

Stochastic Daily Weather Generations for Ungaged Stations (기상자료 미계측 지역의 추계학적 기상발생모형)

  • 강문성;박승우;진영민
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.1
    • /
    • pp.57-67
    • /
    • 1998
  • A stochastic weather generator which simulate daily precipitation, maximum and minimum daily temperature, relative humidity was developed. The model parameters were estimated using stochastic characteristics analysis of historical data of 71 weather stations. Spatial variations of the parameters for the country were also analyzed. Model parameters of ungauged Sites were determined from parameters of adjacent weather stations using inverse distance method. The model was verified on Suwon and Ulsan weather stations and showed good agreement between simulated and observed data.

  • PDF

Comparison a Forest Fire Spread variation according to weather condition change (기후조건 변화에 따른 산불확산 변화 비교)

  • Lee, Si-Young;Park, Houng-Sek
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.490-494
    • /
    • 2008
  • We simulated a forest fire which was occurred in Yangyang area on 2005 and compared a results between two different weather conditions(real weather condition and mean weather condition since 1968) using FARSITE, which is a forest fire spread simulator for preventing and predicting fire in USDA. And, we researched a problem in the transition for introducing, so we serve the basic method for prevention and attacking fire. In the result, severe weather condition on 2005 effected a forest fire behavior. The rate of spread under real weather condition was about 4 times faster than mean weather condition. Damaged area was about 10 time than mean weather condition. Therefore, Climate change will make a more sever fire season. As we will encounter to need for accurate prediction in near future, it will be necessary to predict a forest fire linked with future wether and fuel condition.

  • PDF

A Study on Clutter Cancellation in a Weather Radar System Using a Phased Array Antenna (위상배열 안테나를 활용한 기상 레이다 시스템에서의 클러터 제거에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1173-1179
    • /
    • 2008
  • Since there are very strong clutter returns in airborne and ground weather radars used for the detection of low altitude weather hazards, the reliable weather data cannot be extracted from the weak Doppler weather signal without cancellation of these strong clutter returns. However, the clutter cancellation in Doppler frequency domain is not an easy task since even the fixed clutter returns not to mention the moving clutter can have Doppler shifts due to the antenna rotation and operational environment. Therefore, it was shown in this paper a simple array antenna system can be used for the efficient clutter cancellation in the spatial domain. The weather signal, various moving and fixed clutters were modelled and simulated to prove the performance of this adaptive array system. Also, the degree of accuracy in pulse-pair estimates of a weather radar was compared and analyzed from the simulated weather data.

A Study on the Doppler Signal Simulation of a Weather Radar (기상레이다 도플러 신호 모의구현에 관한 연구)

  • Lee, Jong-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.561-564
    • /
    • 2007
  • Recently, The detection of weather conditions and weather related hazards with a weather radar are being actively investigated based on the echo intensity and the Doppler spectrum analysis. For this purpose, many types of simulated weather signals are needed for investigation. Therefore, this paper analyzed the method to simulate the many weather radar signals.

  • PDF

A Skewed Doppler Spectrum Model in a Weather Radar (기상레이다에서의 비대칭 도플러 모델)

  • Lee, Jong-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.853-856
    • /
    • 2007
  • A weather radar extracts the weather information from the return echoes which consist of scattered electromagnetic wave signals from rain, cloud and dust particles, etc. The acquisition of accurate weather information depends on the operation environment which include the Doppler weather signal and ground clutter characteristics. Since the conventional symmetric weather Doppler model does not represent the measurements in real situations, the improved model is suggested to describe the skewness in the Doppler spectrum model. Using the suggested model, many various weather signals can be simulated to verify the accuracy of signal processing algorithms and the reliability of the extracted weather information

  • PDF

Simulating Crop Yield and Probable Damage From Abnormal Weather Conditions (이상기후에 따른 농작물의 수확량 및 재해발생 확률의 추정)

  • 임상준;박승우;강문성
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.6
    • /
    • pp.31-40
    • /
    • 1997
  • Potential impacts for unfavourable weather conditions and the assessment of the magnitudes of their adverse effects on crop yields were studied. EPIC model was investigated for its capability on crop yield predictions for rice and soybean. Weather generationmodel was used to generate long-term climatic data. The model was verified with ohserved climate data of Suwon city. Fifty years weather data including abnormal conditions were generated and used for crop yield simulation by EPIC model. Crop yield probability function was derived from simulated crop yield data, which followed normal distribution. Probable crop yield reductions due to abnormal weather conditions were also analyzed.

  • PDF

Clutter Removal in a Weather Radar Using an Adaptive Array Antenna (적응배열 안테나를 이용한 기상 레이다에서의 클러터 제거)

  • Lee, Jong-Gil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6C
    • /
    • pp.398-402
    • /
    • 2011
  • High resolution windspeed profile measurements are needed in a weather radar to provide the reliable information of rapidly changing weather conditions. However, it is necessary to remove both stationary and moving clutter to obtain the accurate pulse pair estimates. To overcome these problems, a simple adaptive array antenna may be applied to clutter removal. Using the simulated weather and clutter data, the clutter cancellation capability is analyzed for a weather radar with an adaptive antenna. The pulse pair estimates obtained from the adaptive weather radar are compared with those of the raw data.

Hit Rate Prediction Algorithm for Laser Guided Bombs Using Image Processing (영상처리 기술을 활용한 레이저 유도폭탄 명중률 예측 알고리즘)

  • Ahn, Younghwan;Lee, Sanghoon
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.3
    • /
    • pp.247-256
    • /
    • 2015
  • Since the Gulf War, air power has played a key role. However, the effect of high-tech weapons, such as laser-guided bombs and electronic optical equipment, drops significantly if they do not match the weather conditions. So, aircraft that are assigned to carry laser-guided bombs must replace these munitions during bad weather conditions. But, there are no objective criteria for when weapons should be replaced. Therefore, in this paper, we propose an algorithm to predict the hit rate of laser-guided bombs using cloud image processing. In order to verify the accuracy of the algorithm, we applied the weather conditions that may affect laser-guided bombs to simulated flight equipment and executed simulated weapon release, then collected and analyzed data. Cloud images appropriate to the weather conditions were developed, and applied to the algorithm. We confirmed that the algorithm can accurately predict the hit rate of laser-guided bombs in most weather conditions.