• Title/Summary/Keyword: Simulated Specimen Test

Search Result 96, Processing Time 0.032 seconds

Proposal of a Simulated Test Method for the Evaluation of Deformation and Failure Characteristics of Pipe Elbows under Cyclic Loads (반복하중 하의 엘보우 변형 및 손상 특성 평가를 위한 모사시험 방법 제안)

  • Kim, Jin Weon;Lee, Dae Young;Park, Heung Bae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • This study proposed a simulated test method using ring specimen to evaluate the deformation and failure characteristics of pipe elbows under a large amplitude cyclic load. The validity of the test method was demonstrated by finite element (FE) analysis of pipe elbow and ring specimen under cyclic loads. The results showed that the proposed test method adequately simulates the distribution of circumferential strain at crown of pipe elbows where cracks occur under cyclic loads and presents the cyclic hardening behavior of pipe elbows. The parametric FE analysis showed that consistent simulated test results could be obtained when the test section of the ring specimen is longer than 1/2 of the inner diameter of the ring specimen and the radius of the inner loading jig is less than 1/4 of the inner diameter of the specimen.

Direct and indirect methods for determination of mode I fracture toughness using PFC2D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.39-47
    • /
    • 2017
  • In this paper, mode I fracture toughness of rock was determined by direct and indirect methods using Particle Flow Code simulation. Direct methods are compaction tension (CT) test and hollow centre cracked quadratic sample (HCCQS). Indirect methods are notched Brazilian disk (NBD) specimen, the semi-circular bend (SCB) specimen, hollow centre cracked disc (HCCD), the single edge-notched round bar in bending (SENRBB) specimen and edge notched disk (END). It was determined that which one of indirect fracture toughness values is close to direct one. For this purpose, initially calibration of PFC was undertaken with respect to data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, the simulated models in five introduced indirect tests were cross checked with the results from direct tests. By using numerical testing, the failure process was visually observed. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Mode I fracture toughness of rock in direct test was less than other tests results. Fracture toughness resulted from semi-circular bend specimen test was close to direct test results. Therefore semi-circular bend specimen can be a proper test for determination of Mode I fracture toughness of rock in absence of direct test.

Development of Local Failure Criteria for Well Thinning Defect by Simulated Specimen Tests (모사시편 시험을 통한 감육결함 국부손상기준 개발)

  • Kim, Jin-Weon;Kim, Do-Hyung;Park, Chi-Yong;Lee, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.304-312
    • /
    • 2007
  • The objective of this study is to develop a local failure criterion for a wall thinning defect of piping components. For this purpose, a series of tensile tests was performed using several types of simulated specimens with different stress states, including smooth round bar, notched round bar (five different notch radii), and grooved plate (three different groove radii). In addition, finite element (FE) simulations were performed on the simulated specimen tests and the results were compared with the test results. From the comparisons, the equivalent stress and strain corresponding to maximum load and final failure of notched specimens were proposed as failure criteria under tensile load. The criteria were verified by employing them to the estimation of failure of grooved plate specimens that simulate the wall thinning defect. It showed that the proposed criteria accurately estimate the maximum load and final failure of grooved plate specimen tests.

New test method for real-time measurement of SCC initiation of thin disk specimen in high-temperature primary water environment

  • Geon Woo Jeon;Sung Woo Kim;Dong Jin Kim;Chang Yeol Jeong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4481-4490
    • /
    • 2022
  • In this study, a new rupture disk corrosion test (RDCT) method was developed for real-time detection of stress corrosion cracking (SCC) initiation of Alloy 600 in a primary water environment of pressurized water reactors. In the RDCT method, one side of a disk specimen was exposed to a simulated primary water at high temperature and pressure while the other side was maintained at ambient pressure, inducing a dome-shaped deformation and tensile stress on the specimen. When SCC occurs in the primary water environment, it leads to the specimen rupture or water leakage through the specimen, which can be detected in real-time using a pressure gauge. The tensile stress applied to the disk specimen was calculated using a finite element analysis. The tensile stress was calculated to increase as the specimen thickness decreased. The SCC initiation time of the specimen was evaluated by the RDCT method, from which result it was found that the crack initiation time decreased with the decrease of specimen thickness owing to the increase of applied stress. After the SCC initiation test, many cracks were observed on the specimen surface in an intergranular fracture mode, which is a typical characteristic of SCC in the primary water environment.

Fatigue Strength of Dental Implant in Simulated Body Environments and Suggestion for Enhancing Fatigue Life (생체유사환경 하의 치과용 임플란트의 피로강도 평가 및 수명 향상법)

  • Kim, Min Gun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.259-267
    • /
    • 2014
  • Fatigue tests were performed in various simulated body environments reflecting various factors (such as body fluids, artificial saliva) relevant within a living body. First, the fatigue limit under a simulated body environment (artificial saliva) was evaluated and the governing factors of implant fatigue strength were looked into by observing the fracture mode. The fatigue life of an implant decreased in the artificial saliva environment compared with that in the ringer environment. Furthermore, in the artificial saliva environment, the implant fracture mode was fatigue failure of fixture as opposed to the abutment screw mode in the ringer environment. In the fatigue test, corrosion products were observed on the implant in the simulated body environment. A larger amount of corrosion products were generated on the artificial saliva specimen than on the ringer specimen. It is thought that the stronger corrosion activity on the artificial saliva specimen as compared with that on the ringer specimen led to an overall decrease of fatigue life of the former specimen. In the case of the implant with a nitrided abutment screw eliminated hardened layer (TixN), a several times increase in fatigue life is achieved in comparison with tungsten carbide-coated implants.

Contact Fatigue Analysis of White Etching Layer according to Thickness Variation (White etching layer의 두께변화에 따른 접촉피로수명 평가)

  • Seo, Jung-Won;Kwon, Seok-Jin;Jun, Hyun-Ku;Lee, Dong-Hyong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.35-41
    • /
    • 2010
  • White Etching Layer(WEL) is a phenomenon that occurs on the surface of rail due to wheel/rail interactions such as excessive braking and acceleration. Rolling Contact Fatigue(RCF) cracks on the surface of rail have been found to be associated with WEL. In this study, we have investigated RCF damages of white etching layer using twin disc testing and fatigue analysis. These tests consist of wheel flat tests and rolling contact fatigue tests. WEL has been simulated by wheel flat test. It has been founded that the WEL with a bright featureless contrast is formed on the surface of specimen by etching. Rolling contact fatigue test was conducted by using flat specimens with the WEL generated by the wheel flat test. It has been observed that two types of cracks occur within the specimen. The contact fatigue test was simulated in 2D elastic-plastic FE simulations. Based on loading cycles obtained from the finite element analysis, the fatigue life analysis according to the thickness variation of WEL was carried out. The longest fatigue life was observed from the thickness of 20um.

Electro Chemical Protection Property for Reinforced Geo-Polymer Specimen Under Ocean Environment and Accelerated Test (철근보강 지오폴리머 콘크리트 시험체에 전기화학적 방식기법 적용과 방식성능 분석)

  • Park, Dong-Cheon;Cho, Gyu-hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.178-179
    • /
    • 2014
  • Corrosion is very serious problem in RC structure under ocean environment. There is no enough experiment information using the reinforced geo polymer concrete applied by electo chemical protection system. Three condition, such as tidal zone, submerged zone and crack were simulated to geo polymer specimen. Corrosion rate and natural electrode potential were measured through accelerated test. Anti corrosion property of geo polymer was better than OPC regardless of specimen condition and applied time.

  • PDF

A Study on 4 Point Bending Strength of Aircraft Composite Specimens (항공기 복합재료 적용 시편의 4점 굽힘 강도 연구)

  • Kong, Changduk;Park, Hyunbum;Lim, Seongjin
    • Journal of Aerospace System Engineering
    • /
    • v.4 no.1
    • /
    • pp.23-26
    • /
    • 2010
  • In this study, it was performed damage assesment of small scale composite aircraft developing. This aircraft adopted the sandwich structure to skin of wing. This study aims to investigate the residual strength of sandwich composites with Nomex honeycomb core and carbon fiber face sheets after the open hole damage by the experimental investigation. The 4-point bending tests were used to find the bending strength, and the open hole was applied to introduce the simulated damage on the specimen. The bending strength test results after open hole was compared with the results of no damaged specimen test. The FEM analysis is assessed via an experimental 4-point bending test.

  • PDF

Susceptibility of Stress Corrosion Crack Initiation of Type 304 SS in Simulated Primary Water Environment of PWR (원전 1차 계통수 모사환경에서 Type 304 스테인리스강의 응력부식균열개시 민감도)

  • Sung-Hwan Cho;Sung-Woo Kim;Jong-Yeon Lee
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.25-31
    • /
    • 2024
  • The core shroud of rector vessel internals (RVI) of OPR1000 and ARP1400 is made of Type 304 stainless steel (SS) by bending and welding process that may induce high deformation and residual stress in manufacturing. This work aims to evaluate the susceptibility of stress corrosion crack (SCC) initiation of bent parts of RVI in high temperature primary water environment. For SCC initiation test, tensile specimens were fabricated from the 90 degree bent plate of Type 304 SS (DT specimen), that is an archived part of a Korean APR1400. After the SCC initiation test, the specimen surface was thoroughly examined by optical and scanning electron microscopy, and compared to the specimen fabricated from the as-received plate of Type 304 SS (AR specimen). The surface observation revealed that SCC initiated on the AR specimen surface in typical intergranular (IG) mode, while SCC on the DT specimen occurred in transgrannular mode as well as IG mode. It was also found that the size and number of SCC on the DT specimen were larger than that on the AR specimen. This was attributable to a strain-hardening during the bending process. To compare the susceptibility of SCC initiation, total crack density (TCD) was calculated from the total crack length divided by the measured area of AR and DT specimens. TCD of DT specimen was 4.6 times higher than AR specimen in average, indicating that higher possibility of degradation of bent parts of RVI for a long-term operation.