• Title/Summary/Keyword: Simulated Soil

Search Result 677, Processing Time 0.026 seconds

A Joint Application of DRASTIC and Numerical Groundwater Flow Model for The Assessment of Groundwater Vulnerability of Buyeo-Eup Area (DRASTIC 모델 및 지하수 수치모사 연계 적용에 의한 부여읍 일대의 지하수 오염 취약성 평가)

  • Lee, Hyun-Ju;Park, Eun-Gyu;Kim, Kang-Joo;Park, Ki-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.77-91
    • /
    • 2008
  • In this study, we developed a technique of applying DRASTIC, which is the most widely used tool for estimation of groundwater vulnerability to the aqueous phase contaminant infiltrated from the surface, and a groundwater flow model jointly to assess groundwater contamination potential. The developed technique is then applied to Buyeo-eup area in Buyeo-gun, Chungcheongnam-do, Korea. The input thematic data of a depth to water required in DRASTIC model is known to be the most sensitive to the output while only a few observations at a few time schedules are generally available. To overcome this practical shortcoming, both steady-state and transient groundwater level distributions are simulated using a finite difference numerical model, MODFLOW. In the application for the assessment of groundwater vulnerability, it is found that the vulnerability results from the numerical simulation of a groundwater level is much more practical compared to cokriging methods. Those advantages are, first, the results from the simulation enable a practitioner to see the temporally comprehensive vulnerabilities. The second merit of the technique is that the method considers wide variety of engaging data such as field-observed hydrogeologic parameters as well as geographic relief. The depth to water generated through geostatistical methods in the conventional method is unable to incorporate temporally variable data, that is, the seasonal variation of a recharge rate. As a result, we found that the vulnerability out of both the geostatistical method and the steady-state groundwater flow simulation are in similar patterns. By applying the transient simulation results to DRASTIC model, we also found that the vulnerability shows sharp seasonal variation due to the change of groundwater recharge. The change of the vulnerability is found to be most peculiar during summer with the highest recharge rate and winter with the lowest. Our research indicates that numerical modeling can be a useful tool for temporal as well as spatial interpolation of the depth to water when the number of the observed data is inadequate for the vulnerability assessments through the conventional techniques.

Comparing Prediction Uncertainty Analysis Techniques of SWAT Simulated Streamflow Applied to Chungju Dam Watershed (충주댐 유역의 유출량에 대한 SWAT 모형의 예측 불확실성 분석 기법 비교)

  • Joh, Hyung-Kyung;Park, Jong-Yoon;Jang, Cheol-Hee;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.861-874
    • /
    • 2012
  • To fulfill applicability of Soil and Water Assessment Tool (SWAT) model, it is important that this model passes through a careful calibration and uncertainty analysis. In recent years, many researchers have come up with various uncertainty analysis techniques for SWAT model. To determine the differences and similarities of typical techniques, we applied three uncertainty analysis procedures to Chungju Dam watershed (6,581.1 $km^2$) of South Korea included in SWAT-Calibration Uncertainty Program (SWAT-CUP): Sequential Uncertainty FItting algorithm ver.2 (SUFI2), Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol). As a result, there was no significant difference in the objective function values between SUFI2 and GLUE algorithms. However, ParaSol algorithm shows the worst objective functions, and considerable divergence was also showed in 95PPU bands with each other. The p-factor and r-factor appeared from 0.02 to 0.79 and 0.03 to 0.52 differences in streamflow respectively. In general, the ParaSol algorithm showed the lowest p-factor and r-factor, SUFI2 algorithm was the highest in the p-factor and r-factor. Therefore, in the SWAT model calibration and uncertainty analysis of the automatic methods, we suggest the calibration methods considering p-factor and r-factor. The p-factor means the percentage of observations covered by 95PPU (95 Percent Prediction Uncertainty) band, and r-factor is the average thickness of the 95PPU band.

Research on the Effect of the Control Methods of Irrigation Water on the Growth and Yield of Paddy Rice. (한발기에 있어서 용수관리 방법이 수도생육과 그 수량에 미치는 영향에 관한 연구)

  • 김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2177-2190
    • /
    • 1971
  • This experiment was made to determienthe effect of various soil moisture contents in simulated drought conditions on different stages of rice growth. The drought conditions were developed at such three rice-growing stages as transplanting, immediately after transplanting and young ear forming. Three different lengths of drought periods, which are ten days, twenty days and thirty days, were applied for each growing stage of rice. The rice variety used this experiment is Nong-rim 29. This experiment was conducted at the university farm of the Kon-Kuk University during the period of $1968{\sim}1970$. Three reprications for each of 12 treatments and split plot design were employed in this study. Bottomless wood square boxes, $1^m{\times}1^m{\times}1^m$, were burried in the test plot and box top was covered with poloyethylene sheets to avoid natural rainfall drops. Standard plots were irrigated continuously with a water depth of 40mm/day and those of drought treatments were irrigated continuously up to the beginning of the planned drought period, and they were irrigated again with a depth of 40mm/day up to the maturing stage of rice. Other methods for rice raising followed those methods developed by the Field Crops Experiment Station of the Office of Rural Development. During this experiments, climatic conditions in regard to rainfalls, sunshine hours, and temperatures were observed. According to this observation, those values measured deviate slightly from the annual means. However the growing condition of rice plants were normal. The pH value of irritation water is nearly neutral, and soils in the test plots are relatively fertile, being similar to ordinary paddy soils. Analysis of variances for number of stalks, plan-height, ear sprouting date, length of stalks, ear length, number of ears per plant, fertility, grain weitght, weight of plant, and yield were carried out. The variances for plant height, ear sprouting date, length of stalk ear length, and yield has statistical significance under drought treatments applied at three different growing stages. The variance showing the effect of lengths of drought period is highly significant for all the treatments studied except that of grain weight. The interaction between drought periods and drought treatments at different growing stages is significant for plant height, stalk length, ear length, number of ears, fertility and yield, these results indicated that droughts at different growing stages have influence on plant height, ear length, yield, and length of drought period also has strong influence on all factors studied except grain weight. The combination of drought treatments at different rice growing stages and lengths of drought periods has different effects on various agronomic characteristics, including yield. Plant height under drought treatment practiced at transplanting stage is the lowest, and drought treatment applied immediately after transplanting resulted in the least number of stalks. The effect of different lengths of drought periods on plant height and number of stalks depends signis ficantly on increasing days of drought. Ear sprouting date tends to be delayed for one or two days undedrought treatments at transplanting period and with increasing days of drought. Better yield is secured in drought treatment applied immediately after transplanting. Adverse effect war observed when drought treatment was applied at ear forming period. These effects may be attributed to the alternation of irrigation and drought causing vigorous root activity. In general, yield linearly decreases as the length of the drought period increases. The results obtained in this study demonstrate that, in order to mimimize damage due to drought, and, to save irrigation water, paddy fields, immediately after transplanting, may be not irrigated, since there is sufficient moisture in the soil, and that sufficient irrigation water should be applied again in the ear forming stage of rice plant.

  • PDF

Three-Dimensional Numerical Simulation of Impacts of Layered Heterogeneity and Groundwater Pumping Schemes on Seawater Intrusion (해수 침투에 대한 층상 불균질성 및 지하수 양수 방식의 영향 삼차원 수치 모의)

  • Park, Hwa-Seok;Kihm, Jung-Hwi;Yum, Byoung-Woo;Kim, Jun-Mo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.8-21
    • /
    • 2008
  • A series of three-dimensional numerical simulations using a hydrodynamic dispersion numerical model is performed to analyze quantitatively impacts of layered heterogeneity of geologic media and groundwater pumping schemes on groundwater flow and salt transport in coastal aquifer systems. A two-layer heterogeneous coastal aquifer system composed of a lower sand layer (aquifer) and an upper clay layer (aquitard) and a corresponding single-layer homogeneous coastal aquifer system composed of an equivalent lumped material are simulated to evaluate impacts of layered heterogeneity on seawater intrusion. In addition, a continuous groundwater pumping scheme and two different periodical groundwater pumping schemes, which withdraw the same amount of groundwater during the total simulation time, are applied to the above two coastal aquifer systems to evaluate impacts of groundwater pumping schemes on seawater intrusion. The results of the numerical simulations show that the periodical groundwater pumping schemes have more significant adverse influences on groundwater flow and salt transport not only in the lower sand layer but also in the upper clay layer, and groundwater salinization becomes more intensified spatially and temporally as the pumping intensity is higher under the periodical groundwater pumping schemes. These imply that the continuous groundwater pumping scheme may be more suitable to minimize groundwater salinization due to seawater intrusion. The results of the numerical simulations also show that groundwater salinization in the upper clay layer occurs significantly different from that in the lower sand layer under the periodical groundwater pumping schemes. Such differences in groundwater salinization between the two adjacent layers may result from layered heterogeneity of the layered coastal aquifer system.

Study on Analysis of the Proper Ratio and the Effects of Low Impact Development Application to Sewage Treatment District (하수처리구역 내 LID 적용에 대한 적정비율 및 효과분석 연구)

  • Shin, Hyun Suk;Kim, Mi Eun;Kim, Jae Moon;Jang, Jong Kyung
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1193-1207
    • /
    • 2013
  • Increase of impervious area caused by overdevelopment has led to increase of runoff and then the problem of flooding and NPS were brought up. In addition, as decrease of base flow made groundwater level to decline, a stream that dries up is issued. low impact development (LID) method which is possible to mimic hydrological water cycle, minimize the effect of development, and improve water cycle structure is proposed as an alternative. As introduction of LID in domestic increases, the study on small watershed is in process mainly. Also, analysis of property of hydrological runoff and load on midsize watershed, like sewage treatment district, is required, the study on it is still insufficient. So, area applying LID practices from watershed of Dongrae stream is pinpointed and made the ratio and then expand it to watershed of Oncheon stream. Among low impact development practices, Green Roof, Porous Pavement, and Bio- retention are selected for the application considering domestic situations and simulated with SWMM-LID model of each watershed and improvement of water cycle and reduction of non-point pollution loads was analysed. Improvement of water cycle and reduction of non-point pollution loads were analyzed including the property of rainfall and soil over long term simulation. The model was executed according to scenario based on combination of LID as changing conductivity in accordance with soil type of the watershed. Also, this study evaluated area of LID application that meets the efficiency of conventional management as a criteria for area of LID practices applying to sewer treatment district by comparing the efficiency of LID application with that of conventional method.

The NCAM Land-Atmosphere Modeling Package (LAMP) Version 1: Implementation and Evaluation (국가농림기상센터 지면대기모델링패키지(NCAM-LAMP) 버전 1: 구축 및 평가)

  • Lee, Seung-Jae;Song, Jiae;Kim, Yu-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.307-319
    • /
    • 2016
  • A Land-Atmosphere Modeling Package (LAMP) for supporting agricultural and forest management was developed at the National Center for AgroMeteorology (NCAM). The package is comprised of two components; one is the Weather Research and Forecasting modeling system (WRF) coupled with Noah-Multiparameterization options (Noah-MP) Land Surface Model (LSM) and the other is an offline one-dimensional LSM. The objective of this paper is to briefly describe the two components of the NCAM-LAMP and to evaluate their initial performance. The coupled WRF/Noah-MP system is configured with a parent domain over East Asia and three nested domains with a finest horizontal grid size of 810 m. The innermost domain covers two Gwangneung deciduous and coniferous KoFlux sites (GDK and GCK). The model is integrated for about 8 days with the initial and boundary conditions taken from the National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) data. The verification variables are 2-m air temperature, 10-m wind, 2-m humidity, and surface precipitation for the WRF/Noah-MP coupled system. Skill scores are calculated for each domain and two dynamic vegetation options using the difference between the observed data from the Korea Meteorological Administration (KMA) and the simulated data from the WRF/Noah-MP coupled system. The accuracy of precipitation simulation is examined using a contingency table that is made up of the Probability of Detection (POD) and the Equitable Threat Score (ETS). The standalone LSM simulation is conducted for one year with the original settings and is compared with the KoFlux site observation for net radiation, sensible heat flux, latent heat flux, and soil moisture variables. According to results, the innermost domain (810 m resolution) among all domains showed the minimum root mean square error for 2-m air temperature, 10-m wind, and 2-m humidity. Turning on the dynamic vegetation had a tendency of reducing 10-m wind simulation errors in all domains. The first nested domain (7,290 m resolution) showed the highest precipitation score, but showed little advantage compared with using the dynamic vegetation. On the other hand, the offline one-dimensional Noah-MP LSM simulation captured the site observed pattern and magnitude of radiative fluxes and soil moisture, and it left room for further improvement through supplementing the model input of leaf area index and finding a proper combination of model physics.

Effects of Drought Stress and Nitrogen Fertilization on Growth and Physiological Characteristics of Pinus densiflora Seedlings Under Elevated Temperature and CO2 Concentration (대기 중 온도 및 CO2 농도 조절에 따른 건조 스트레스와 질소 시비가 소나무의 생장 및 생리적 특성에 미치는 영향)

  • Song, Wookyung;Lee, Bora;Cho, Nanghyun;Jung, Sungcheol;Kim, Eun-Sook;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.57-67
    • /
    • 2020
  • Pinus densiflora is the most widely distributed tree species in South Korea. Its ecological and socio-cultural attributes makes it one of the most important tree species in S. Korea. In recent times however, the distribution of P. densiflora has been affected by dieback. This phenomenon has largely been attributed to climate change. This study was conducted to investigate the responses of growth and physiology of P. densiflora to drought and nitrogen fertiliz ation according to the RCP 8.5 scenario. A Temperature Gradient Chamber (TGC) and CO2. Temperature Gradient Chamber (CTGC) were used to simulate climate change conditions. The treatments were established with temperature (control versus +3 and +5℃; aCeT) and CO2 (control: aCaT versus x1.6 and x2.2; eCeT), watering(control versus drought), fertilization(control versus fertilized). Net photosynthesis (Pn), stomatal conductance (gs), biomass and relative soil volumetric water content (VWC) were measured to examine physiological responses and growth. Relative soil VWC in aCeT significantly decreased after the onset of drought. Pn and gs in both aCeT and eCeT with fertiliz ation were high before drought but decreased rapidly after 7 days under drought because nitrogen fertilization effect did not last long. The fastest mortality was 46 days in aCeT and the longest survival was 56 days in eCeT after the onset of drought. Total and partial biomass (leaf, stem and root) in both aCeT and eCeT with fertiliz ation were significantly high, but significantly low in aCeT. The results of the study are helpful in addressing P. densiflora vulnerability to climate change by highlighting physiological responses related to carbon allocation under differing simulated environmental stressors.

Estimation of High Resolution Sea Surface Salinity Using Multi Satellite Data and Machine Learning (다종 위성자료와 기계학습을 이용한 고해상도 표층 염분 추정)

  • Sung, Taejun;Sim, Seongmun;Jang, Eunna;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.747-763
    • /
    • 2022
  • Ocean salinity affects ocean circulation on a global scale and low salinity water around coastal areas often has an impact on aquaculture and fisheries. Microwave satellite sensors (e.g., Soil Moisture Active Passive [SMAP]) have provided sea surface salinity (SSS) based on the dielectric characteristics of water associated with SSS and sea surface temperature (SST). In this study, a Light Gradient Boosting Machine (LGBM)-based model for generating high resolution SSS from Geostationary Ocean Color Imager (GOCI) data was proposed, having machine learning-based improved SMAP SSS by Jang et al. (2022) as reference data (SMAP SSS (Jang)). Three schemes with different input variables were tested, and scheme 3 with all variables including Multi-scale Ultra-high Resolution SST yielded the best performance (coefficient of determination = 0.60, root mean square error = 0.91 psu). The proposed LGBM-based GOCI SSS had a similar spatiotemporal pattern with SMAP SSS (Jang), with much higher spatial resolution even in coastal areas, where SMAP SSS (Jang) was not available. In addition, when tested for the great flood occurred in Southern China in August 2020, GOCI SSS well simulated the spatial and temporal change of Changjiang Diluted Water. This research provided a potential that optical satellite data can be used to generate high resolution SSS associated with the improved microwave-based SSS especially in coastal areas.

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF

Assessment of Carsington Dam Failure by Slope Stability and Dam Behavior Analyses (사면안정 해석과 댐 거동분석을 통한 Carsington Dam 파괴의 고찰)

  • 송정락;김성인
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.87-102
    • /
    • 1991
  • It has been reported that the failure of Carsington Dam in Eng1and occured due to the existence of a thin yellow clay layer which was not identified during the design work, and due to pre-existing shears of the clay layer. The slope stability analyses during the design work, which utilized traditional circular arc type failure method and neglected the existence of the clay layer, showed a safety factor of 1.4. However, the post-failure analyses which utilized translational failure mode considering the clay layer and the pre-existing shear deformation revealed the reduction of safety factor to unity. The post-failure analysis assumed 10。 inclination of the horizontal forces onto each slice based on the results of finite element analyses. In this paper, Bishop's simplified method, Janbu method, and Morgenstern-Price method were used for the comparison of both circular and translational failure analysis methods. The effects of the pre-existing shears and subsquent movement were also considered by varying the soil strength parameters and the pore pressure ratio according to the given soi1 parameters. The results showed factor of safefy 1.387 by Bishop's simplified method(STABL) which assumed circular arc failure surface and disregarding yellow clay layer and pre-failure material properties. Also the results showed factor of safety 1.093 by Janbu method(STABL) and 0.969 by Morgenstern-Price method(MALE) which assumed wedge failure surface and considerd yellow clay layer using post failure material properties. In addition, dam behavior was simulated by Cam-Clay model FEM program. The effects of pore pressure changes with loading and consolidation, and strength reduction near or at failure were also considered based on properly assumed stress-strain relationship and pore pressure characteristics. The results showed that the failure was initiated at the yellow clay layer and propagated through other zones by showing that stress and displacement were concentrated at the yel1ow clay layer.

  • PDF