• 제목/요약/키워드: Simulated Soil

Search Result 679, Processing Time 0.023 seconds

Determination of Refreshing Time of Natural Zeolite Used for Livestock Waste Water Clearing Based on Electrical Conductivity (축산폐수(畜産廢水) 처리시(處理時) 전기전도도(電氣傳導度)를 기준(基準)한 천연(天然) Zeolite의 교환시기(交換時期) 결정(決定))

  • Choi, Jyung;Seo, Young-Jin;Lee, Dong-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.130-136
    • /
    • 1996
  • This study was carried out easily to determine the refreshing time of natural Zeolite used for the clearing of Livestock waste water and to investigate the relationship between EC of solution and adsorption amount on Zeolite. During the adsorption reaction, EC of supernatant solution decreased till the equilibrium was reached and kept a constant level after it. EC was greatly decreased with the concentration of solution and the magnitude of adsorbent. Decrease in EC of suspension was found to be lesser in addition of Na-Zeolite than Ca-Zeolite. EC change of Livestock waste water was shown to be similar tendency to that of the simulated waste water. On the cumulative adsorption isotherm, the EC of suspension increased until the EC value of the initial solution as the increase in treatment times. Therefore, it is apparent that the exchange point of natural zeolite should be in the vicinity of the EC value of initial waste water.

  • PDF

Effect of Simulated Acid Rain on Crops (농작물(農作物)에 대(對)한 인공산성(人工酸性)비의 영향(影響))

  • Kim, Bok-Young;Kim, Kyu-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.2
    • /
    • pp.161-167
    • /
    • 1988
  • Studies were carried out to examine the effects of simulated acid rain on the various crops of rice, peper, tomato, pumpkin, egg plant, potato, soybean, radish, cucumber, common pea, sweet potato, corn, lettuce, chinse cabbage, spinach, under the condition of the rains of pH 3.0. The rain was adjusted to pH 4.0, 3.0, 2.0 with sulfuric acid, and soybeans were exposed with the various pH levels, eighteen times every other days. The symptoms of damage, ratios of destroyed leaf and sulphur content by leaves were investigated. The results obtained were as follows. 1. The exposure to the rain resulted in the reddish brown or white pigment spots in the leaves surface and the colour was developed red and darker along the edge of spots. 2. Most crops were affected with acid rain of pH 3.0 at which the amount of chlorophyl was decreased. 3. The spinach, chinese cabbage, lettuce were sensitive to the acid rain, however, the peper, tomato pumpkin were resistance to it. 4. The content of chlorophyl was decreased with increasing leave injury. 5. The sulphur content in leave was increased with increasing acidity of the rain, however the yield was decreased.

  • PDF

Assessment of the Hydraulic Conductivity of the Furnace Slag Coated with the Mixture of Bentonite-sepiolite-guargum under Sea Water Condition (벤토나이트-해포석-구아검 혼합물질이 코팅된 제강슬래그의 해수에 대한 투수성 평가)

  • Cheong, Eui-Seok;Rhee, Sung-Su;Woo, Hee-Soo;Park, Jun-Boum
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.4
    • /
    • pp.1-9
    • /
    • 2011
  • Bentonite has been generally used as vertical cutoff barrier material and reported to have several problems regarding its low workability, drying shrinkage cracking by particle cohesion, and ineffective waterproof ability under sea water condition. In this study, the particle sealant, the furnace slag coated by the mixture of bentonite, sepiolite and guargum, was developed to compensate these weak points and the hydraulic conductivity of the particle sealant was evaluated. Drying shrinkage cracking and swelling index was estimated to find the optimal mixing ratio of bentonite, sepiolite and guargum. The hydraulic conductivity of the particle sealants having different amount of sealant (bentonite-sepioliteguargum mixture) coating the furnace slag was estimated using the rigid wall permeameter and flexible wall permeameter. The results showed that drying shrinkage cracking was not found in the bentonite-sepiolite mixture with 20% sepiolite contents and the results from free swelling tests for the sealant having 1 : 0.025, 1 : 0.05 and 1 : 0.075 of weight ratios of bentonite-sepiolite mixture and guargum under simulated sea water condition were higher than those for the bentonitesepiolite mixture without guargum under tap water condition. These three sealants were coated on the furnace slag with 50% and 60% of sealant in the particle sealant and the hydraulic conductivity was estimated. In the cases of the particle sealants having 20% sepiolite in the bentonite-sepiolite mixture and 1 : 0.075 weight ratio of the bentonite-sepiolite mixture and guargum, the hydraulic conductivity from the rigid wall permeameter was below $1.0{\times}10^{-7}$ cm/sec under simulated sea water condition. The hydraulic conductivity of the particle sealant having $1.0{\times}10^{-6}$~$1.0{\times}10^{-7}$ cm/sec by the rigid wall permeameter was estimated using the flexible wall permeameter and found to be below $1.0{\times}10^{-7}$ cm/sec.

Study on Pesticide Runoff from Soil Surface-III - Runoff of Pesticides by Simulated Rainfall in the Laboratory - (농약의 토양 표면유출에 관한 연구-III - 실내에서 인공강우에 의한 농약의 유출특성 -)

  • Yeom, Dong-Hyuk;Kim, Jeong-Han;Lee, Sung-Kyu;Kim, Yong-Hwa;Park, Chang-Kyu;Kim, Kyun
    • Applied Biological Chemistry
    • /
    • v.40 no.4
    • /
    • pp.334-341
    • /
    • 1997
  • In the laboratory experiment, concentration and rate of runoff of 7 pesticides were measured under the simulated rainfall. Total runoff rate of metolachlor, alachlor, chlorothalonil, chlorpyrifos, EPN, phorate and captafol were 57.0, 14.2, 13.2, 7.9, 7.2, 7.1 and 2.8%, respectively, and the average runoff concentrations were 940, 399, 55, 7.0, 9.3, 151 and 7.0 ppb, respectively. Significant relationship was observed between the runoff rate and water solubility in the laboratory experiment(r=0.923). Even though not very high, relatively significant results were obtained in other experimental conditions. Based on the results, runoff rate prediction$[Y=0.2812{\times}10exp(0.261logWS-0.366)+0.3594{\times}10exp(-0.545logKoc+1.747)+0.3594{\times}10exp(-0.362log\;Kow+1.105]$ and conversion equations were calculated to investigate the possibility of estimating runoff rate in the field by natural rain. Calculated runoff rate by conversion equation was similar to experimental result with captafol in the field while 6 times higher result was obtained by the prediction equation. Therefore, those prediction and conversion equations derived from the laboratory experiment data and physicochemical properties of the pesticides could be used for the prediction of field runoff rate of pesticides by natural rainfall.

  • PDF

Change of Seawater Intrusion Range by the Difference of Longitudinal Dispersivity in Hydrodynamic Modeling (수리동역학적 모델링에서 분산지수에 따른 해수침투 범위의 변화)

  • 심병완;정상용;김희준;성익환
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.59-67
    • /
    • 2002
  • As a parameter for hydrodynamic modeling to define the range of seawater intrusion, dispersivities are frequently determined from pre-experiments or theoretical studies because field experiments need a lot of time and expenses. If the dispersivities are inadequate for an aquifer, the numerical results may have some errors. We examined the validity of longitudinal dispersivities by comparing the ranges of seawater intrusion with numerical modeling, field data and apparent resistivity sections. In the numerical modeling the TDS distributions simulated by the Xu's longitudinal dispersivity are more similar to the values of TDS measured at monitoring wet]s and boreholes than those by the Neuman's longitudinal dispersivity. The ranges of seawater intrusion by numerical simulations using Xu's longitudinal dispersivity show that the contour line of 1000 ㎎/L. as TDS is located at 480 m from the coast in May, while at 390 m in July. The difference is originated from the shift of the interface between seawater and fresh water. It moved toward the coast in July because of the seasonal increase of hydraulic gradient according to rainfall. A contour line of 15 ohm-m was used to define the range of seawater intrusion in apparent resistivity sections. From this criterion on the interface between seawater and fresh water, the range of seawater intrusion is located at 450 m from the coast. This result is similar to the range of seawater intrusion simulated by the numerical modeling using Xu's dispersivity. Therefore the range of seawater intrusion shows the difference due to the dispersivities used for the hydrodynamic modeling and the dispersivity generated by the Xu's equation is considered more effective to decide the range of seawater intrusion in this study area.

Backfill Materials for Underground Facility with Recycling Materials - Small-Scaled Laboratory Chamber Test and FEM Analysis (재활용재료를 이용한 지하매설물용 뒤채움재 - 모형챔버실험 및 유한요소해석)

  • Lee, Kwan-Ho;Lee, Kyung-Jung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.97-103
    • /
    • 2011
  • In this research, a small-scaled laboratory test and FEM analysis have been carried out to evaluate the feasibility of field construction with couple of recycled materials, such as in-situ soil, water-treatment sludge, and crumb rubbers. A static loading, which simulates the real traffic load, was adopted in lab test. The test was carried out, according to simulated field construction stages, such as excavation, bedding materials and pipe installation, placing and curing of controlled low strength materials, and simulated traffic loading. Couple of measuring instruments were adopted. The maximum vertical and horizontal deformations were 0.83% and 1.09%, during placing the CLSM. The measured vertical and horizontal deformations with curing time were 0.603mm and 0.676mm, respectively. The reduction effect of vertical and lateral earth pressure was relatively big. Also, FEM analysis was carried out to get the deformation, earth pressure and strain of PVC with different Controlled Low Strength Materials(CLSM) materials.

Groundwater Flow Modeling for a Finite Unconfined Sandy Aquifer in a Laboratory Scale (사질 자유면 대수층 모형에서의 지하수 모델링)

  • 이승섭;김정석;김동주
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.188-193
    • /
    • 1999
  • Transport of pollutants in aquifer largely depends on groundwater flow which is governed by aquifer hydraulic parameters. Determination of these parameters and associated groundwater modeling become essential for adequate remediation of contaminate groundwater. The objective of this paper is to analyze groundwater flow and determine the optimum hydraulic parameters by performing groundwater modeling based on sensitivity analysis for unconfined sandy gavel aquifer constructed in a laboratory scale under various boundary condition. Results revealed that the simulated drawdown was lower than the observed drawdown irrespective of boundary conditions. and specific yield (S$_{y}$) had less effect on the grondwater flow than permeability (K) in the aquifer. Water balance analysis showed that the measured drawdown in neighboring observation wells during pumping was higher than either simulated or recovered water table. The indicated that a difference might exist in the water tables between aquifer and wells. The difference was investigated by time domain reflectometry (TDR) measurements on water contents in the region of water table and capillary fringe, and explained by a delayed response of water table during gravitational drainage as the water table was lowered as a result of pumping.g.

  • PDF

Simulation of 10-day Irrigation Water Quality Using SWAT-QUALKO2 Linkage Model (SWAT-QUALKO2 연계 모형을 이용한 관개기 순별 관개수질 모의)

  • Kim, Ji Hye;Jeong, Han Seok;Kang, Moon Seong;Song, In Hong;Park, Seung Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.53-63
    • /
    • 2012
  • The objectives of this study were to develop a linked watershed-waterbody modeling system and to assess the impacts of indirect wastewater reuse on irrigation water quality. The Osan stream watershed within Gyeonggi-do of South Korea was selected for this study. The linked modeling system was composed of the SWAT (Soil and water assessment tool) and QUALKO2 models. The SWAT model was calibrated and validated using the stream discharge and water quality data from 2010 to 2011. Runoff and non-point source pollutants from each subbasin and stream discharge from 1980 to 2009 were simulated by the SWAT model and applied to the QUALKO2 model. The QUALKO2 model was calibrated and validated under the conditions of low water and normal discharges, respectively. Finally, The 10-day irrigation water quality from April to September was simulated. The statistical measures of coefficient of determination ($R^2$), reliability index (RI), and efficiency index (EI) were used to evaluate the system performance. The $R^2$, RI and EI values ranged from 0.5 to 1.0, 1.03 to 1.92, and -35.03 to 0.95, respectively. The 10-day irrigation water quality showed the concentrations of BOD and coliform exceeded the water quality guidelines for wastewater reuse. The linked modeling system can be a useful tool to estimate non-point source pollutant loads in watershed and to control the water quality of effluent from a wastewater treatment plant and irrigation water in the downstream waterbody.

A Study on Improving the Performance of the Planting Device of a Vegetable Transplanter

  • Jo, Jin Seok;Okyere, Frank Gyan;Jo, Jae Min;Kim, Hyeon Tae
    • Journal of Biosystems Engineering
    • /
    • v.43 no.3
    • /
    • pp.202-210
    • /
    • 2018
  • Purpose: Due to the growing demand for vegetables all year round, the use of vegetable transplanters has become widespread in agricultural production. However, the type of planting device used for the transplanter affects its overall efficiency. Problems such as inaccurate planting angles and inefficiently wide transplanting hole diameters of the planting device has limited the efficient use of some vegetable transplanters. Our goal in this study was to improve the efficiency of the transplanter by analyzing and modifying the linkages of the planting device of a vegetable transplanter. Methods: Because of its widespread usage in Korea, a linkage-type planting device was used for the experiment, which was divided into three parts. In the first part, the physical trajectory of the tranplanter was extracted using a CCD (charge-coupled device) camera and analyzed. In the second part, a simulated trajectory was developed using Recurdyn 3D software. The simulated and actual trajectories were then compared and analyzed. In the third part, based on the results of the comparison, improvements were made on the linkages of the transplanter and a demonstrative exercise was conducted. Finally, in experiment B, the performance was evaluated through an exercise using both the existing and improved planting devices. Results: The results demonstrated that the average planting angle was improved by 4.96 mm, the soil intrusion diameter was improved by 11.30 mm, and the planting depth was improved by 0.68 mm. Conclusion: It was concluded that the efficiency of a vegetable transplanter can be improved by modifying the linkages through simulations and field demonstrations.

Evaluation of Zoning Effect on Seepage Flow in CFGD using Centrifuge Modeling (원심모형시험을 이용한 단면 구획이 CFGD의 침투 거동에 미치는 영향 평가)

  • Kim, Kyeong-Hwan;Choo, Yun-Wook;Kim, Dong-Soo;Park, Han-Kyu;Shin, Dong-Hoon;Cho, Sung-Eun;Lim, Eun-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.278-287
    • /
    • 2009
  • This thesis studied effect of zoning on seepage flow in concrete faced gravel-fill dam (CFGD) designed to have selected main rockfill or gravel-fill zone, Zone 3Bs with higher permeability to enhance the safety against accidental water infiltration into the dam. For this purpose, centrifuge model tests with two cases, with and without Zone 3Bs, were performed in order to investigate the necessity and the function of Zone 3Bs. Model dams were made by soil samples with modified coefficients of permeability and concrete faced slab was simulated with aluminum alloy. Water infiltration was simulated by rising water table over cracks on the facing. Behaviors of model dams were measured by LVDTs, strain gages, pore water pressures and cameras. Form the results of centrifuge tests, it was found out that the Zone 3Bs acts as a protection of main gravel-fill zone by inducing flow paths for infiltrated water into it as well as by draining off the infiltrated water out of the dam in a short time.

  • PDF