• Title/Summary/Keyword: Simulated Materials

Search Result 1,266, Processing Time 0.033 seconds

Mechanical Properties and Ultrasonic Characteristic of SS400 and STS304 by Simulated Heats (열재현에 의한 SS300 및 STS304의 기계적 성질 및 초음파 특성)

  • Jeong, Jeong-Hwan;Ahn, Seok-Hwan;Park, In-Duck;Nam, Ki-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.127-132
    • /
    • 2003
  • In a today industry, the welding is doing a many portion in structure manufacture. This study is simulated heat of heat-effected zone and researched a mechanical properties and ultrasonic characteristic in used the SS400 and the STS304. As the result mechanical properties of steel that become drawing decreased because of remaining stress by strain gardening according as simulated heat temperature rises, but according as temperature rises in material that do simulated heat after have done annealing, mechanical propensity was improved. The velocity and attenuation become different by effect of remaining stress than effect of material internal microstructure in ultrasonic wave test. In the case of STS304, there was change in mechanical properties by effect that is by strain hardening, but there was no change in material that simulated heat after annealing. When become drawing in ultrasonic waves test, according as simulated heat temperatures rise, change of attenuation coefficient is looked, but material that simulated heat after annealing was no change almost both the volocity and attenuation.

  • PDF

Simulations of the Performance Factors on Vacuum System

  • Kim, Hyung-Taek
    • International journal of advanced smart convergence
    • /
    • v.6 no.4
    • /
    • pp.1-8
    • /
    • 2017
  • In this work, the effects of fairly influential factors on performance of vacuum system, such as constant pressure and outgassing effect were simulated to propose the optimum design factors. Outgassing effects of selected vacuum materials on the vacuum characteristics were simulated by the $VacSim^{Multi}$ simulation tool. This investigation examined the feasibility of reliably simulating the outgassing characteristics of common vacuum chamber materials (aluminum, copper, stainless steel, nickel plated steel, Viton A). The optimum design factors for vacuum systems were suggested based on the simulation results. And, the effects of throttle valve applications on vacuum characteristics were also simulated to obtain the optimum design model of variable conductance on high vacuum system. Simulated vacuum characteristics of the proposed modelling were agreed with the observed experimental behaviour of real systems. Pressure limit valve and normally on-off control valve were schematized as the modelling of throttle valve for the constant process-pressure. Simulation results were plotted as pump-down curve of chamber and variable conductance of throttle valve. Simulated behaviors showed the applications of throttle valve sustained the process-pressure constantly, stably, and reliably.

OXYGEN BEHAVIRO IN SILICON CRYSTAL ANNEALED THROUGH THE SIMULATED THERMAL CYCLE (SIMULATED THERMAL CYCLE로 열처리된 규소 단결정내의 산소 거동)

  • Suh, Dong-Suk;Kwon, Bong-Soo;Kim, Young-Gyu;Choi, Byung-Ho;Park, Jae-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.162-165
    • /
    • 1991
  • Oxygen behaviors in CZ-silicon wafer, grown by the Lucky Advanced Materials Inc. that is a pioneer of silicon material industries in Korea, were investigated to simulate effects on the device performance of oxygen, neglecting the effect of other impurity content, defects and thermal history. Silicon wafers were annealed through simulated 16K SRAM thermal cycle. As initial oxygen concentration increased up to 16.7ppma the amount of oxygen precipitation increased up to 10.6ppma and the bulk microdefect density increased up to $10.3{\times}10^3/mm^2$, but the depth of the denuded zone decreased to $5.0{\mu}m$

  • PDF

Optical Characteristics of a Flexible Back-Light Unit with Plasma Discharge Clusters

  • Goo, Gyo-Uk;Ryu, Si-Hong;Lee, Seung-Eui;Ahn, Sung-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.189-192
    • /
    • 2011
  • A flexible back-light unit (FBLU) is fabricated by embedding plasma discharge clusters in a flexible polymer matrix. The brightness uniformity of an FBLU was measured for various combinations of optical sheets and compared with the simulated results for various bending angles. A gap between light sources causes distinctive integrated brightness curves which have two inflection points depending on bending angle. The brightness distribution of a simulated BLU was in good agreement with that of an actual plasma BLU except for a dark area that appeared at the center of the simulated BLU. The real and simulated BLUs both clearly showed an angle dependency caused by mirror images located between point light sources. On the basis of these results, it is suggested that these mirror-like images could be a major factor in determining the characteristics of FBLUs.

Microstructure and properties of 316L stainless steel foils for pressure sensor of pressurized water reactor

  • He, Qubo;Pan, Fusheng;Wang, Dongzhe;Liu, Haiding;Guo, Fei;Wang, Zhongwei;Ma, Yanlong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.172-177
    • /
    • 2021
  • The microstructure and texture of three 316L foils of 25 ㎛ thickness, which were subjected to different manufacturing process, were systematically characterized using advance analytical techniques. Then, the electrochemical property of the 316L foils in simulated pressurized water reactor (PWR) solution was analyzed using potentiodynamic polarization. The results showed that final rolling strain and annealing temperature had evident effect on grain size, fraction of recrystallization, grain boundary type and texture distribution. It was suggested that large final rolling strain could transfer Brass texture to Copper texture; low annealing temperature could limit the formation of preferable orientations in the rolling process to reduce anisotropy. Potentiodynamic polarization test showed that all samples exhibited good corrosion performance in the simulated primary PWR solution.

Effects of Serrated Grain Boundary Structures on Boron Enrichment and Liquation Cracking Behavior in the Simulated Weld Heat-Affected Zone of a Ni-Based Superalloy (니켈기 초내열합금의 파형 결정립계 구조가 보론 편석과 재현 열영향부 액화균열거동에 미치는 영향)

  • Hong, Hyun-Uk;Choi, June-Woo;Bae, Sang-Hyun;Yoon, Joong-Geun;Kim, In-Soo;Choi, Baig-Gyu;Kim, Dong-Jin;Jo, Chang-Yong
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.31-38
    • /
    • 2013
  • The transition of serrated grain boundary and its effect on liquation behavior in the simulated weld heat-affected zone (HAZ) have been investigated in a wrought Ni-based superalloy Alloy 263. Recently, the present authors have found that grain boundary serration occurs in the absence of adjacent coarse ${\gamma}^{\prime}$ particles or $M_{23}C_6$ carbides when a specimen is direct-aged with a combination of slow cooling from solution treatment temperature to aging temperature. The present study was initiated to determine the interdependence of the serration and HAZ property with a consideration of this serration as a potential for the use of a hot-cracking resistant microstructure. A crystallographic study indicated that the serration led to a change in grain boundary character as special boundary with a lower interfacial energy as those terminated by low-index {111} boundary planes. It was found that the serrated grain boundaries are highly resistant to boron enrichment, and suppress effectively grain coarsening in HAZ. Furthermore, the serrated grain boundaries showed a higher resistance to susceptibility of liquation cracking. These results was discussed in terms of a significant decrease in interfacial energy of grain boundary by the serration.