• Title/Summary/Keyword: Simulated Data

Search Result 3,932, Processing Time 0.03 seconds

Analysis on Spatiotemporal Variability of Erosion and Deposition Using a Distributed Hydrologic Model (분포형 수문모형을 이용한 침식 및 퇴적의 시.공간 변동성 분석)

  • Lee, Gi-Ha;Yu, Wan-Sik;Jang, Chang-Lae;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.11
    • /
    • pp.995-1009
    • /
    • 2010
  • Accelerated soil erosion due to extreme climate change, such as increased rainfall intensity, and human-induced environmental changes, is a widely recognized problem. Existing soil erosion models are generally based on the gross erosion concept to compute annual upland soil loss in tons per acre per year. However, such models are not suitable for event-based simulations of erosion and deposition in time and space. Recent advances in computer geographic information system (GIS) technologies have allowed hydrologists to develop physically based models, and the trend in erosion prediction is towards process-based models, instead of conceptually lumped models. This study aims to propose an effective and robust distributed rainfall-sediment yield-runoff model consisting of basic element modules: a rainfall-runoff module based on the kinematic wave method for subsurface and surface flow, and a runoff-sediment yield-runoff model based on the unit stream power method. The model was tested on the Cheoncheon catchment, upstream of the Yongdam dam using hydrological data for three extreme flood events due to typhoons. The model provided acceptable simulation results with respect to both discharge and sediment discharge even though the simulated sedigraphs were underestimated, compared to observations. The spatial distribution of erosion and deposition demonstrated that eroded sediment loads were deposited in the cells along the channel network, which have a short overland flow length and a gentle local slope while the erosion rate increased as rainfall became larger. Additionally, spatially heterogeneous rainfall intensity, dependant on Thiessen polygons, led to spatially-distinct erosion and deposition patterns.

Inundation Numerical Simulation in Masan Coastal Area (마산 연안의 침수 수치모형 실험)

  • Kim, Cha-Kyum;Lee, Jong-Tae;Jang, Ho-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.11
    • /
    • pp.985-994
    • /
    • 2010
  • Typoon Maemi landed on the southern coast of Korean Peninsula at 21:00, September 12, 2003 with a central pressure of 950 hPa. A three dimensional (3D) inundation model was established to calculate the storm surge and flooded area due to Typoon Maemi. A field survey of storm surge traces in Masan City was carried out to evaluate the inundation water depth. Hydromet-Rankin Vortex model was used to calculate the atmospheric pressure and the surface wind fields. The inundation area, storm surge and typoon-induced current were calculated using the 3D model. The peak of computed storm surge in Masan Port using the 3D model was 238 cm, and the observed peak was 230 cm. The simulated storm surge and the inundation area showed good agreement with field survey data. The comparison of the 3D and the two dimensional (2D) models of storm surge was carried out, and the 3D model was more accurate. The computed typoon-induced currents in the surface layer of Masan Bay went into the inner bay with 30~60 cm/s, while the currents in the bottom layer flowed out with 20~40 cm/s.

Investigating the Impact of Random and Systematic Errors on GPS Precise Point Positioning Ambiguity Resolution

  • Han, Joong-Hee;Liu, Zhizhao;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.3
    • /
    • pp.233-244
    • /
    • 2014
  • Precise Point Positioning (PPP) is an increasingly recognized precisely the GPS/GNSS positioning technique. In order to improve the accuracy of PPP, the error sources in PPP measurements should be reduced as much as possible and the ambiguities should be correctly resolved. The correct ambiguity resolution requires a careful control of residual errors that are normally categorized into random and systematic errors. To understand effects from two categorized errors on the PPP ambiguity resolution, those two GPS datasets are simulated by generating in locations in South Korea (denoted as SUWN) and Hong Kong (PolyU). Both simulation cases are studied for each dataset; the first case is that all the satellites are affected by systematic and random errors, and the second case is that only a few satellites are affected. In the first case with random errors only, when the magnitude of random errors is increased, L1 ambiguities have a much higher chance to be incorrectly fixed. However, the size of ambiguity error is not exactly proportional to the magnitude of random error. Satellite geometry has more impacts on the L1 ambiguity resolution than the magnitude of random errors. In the first case when all the satellites have both random and systematic errors, the accuracy of fixed ambiguities is considerably affected by the systematic error. A pseudorange systematic error of 5 cm is the much more detrimental to ambiguity resolutions than carrier phase systematic error of 2 mm. In the $2^{nd}$ case when only a portion of satellites have systematic and random errors, the L1 ambiguity resolution in PPP can be still corrected. The number of allowable satellites varies from stations to stations, depending on the geometry of satellites. Through extensive simulation tests under different schemes, this paper sheds light on how the PPP ambiguity resolution (more precisely L1 ambiguity resolution) is affected by the characteristics of the residual errors in PPP observations. The numerical examples recall the PPP data analysts that how accurate the error correction models must achieve in order to get all the ambiguities resolved correctly.

Experiments on the GPR Reposnse of the Organic Hydrocarbons (유류오염물질의 GPR 반응에 대한 모델 실험 연구)

  • 김창렬
    • Economic and Environmental Geology
    • /
    • v.37 no.2
    • /
    • pp.185-193
    • /
    • 2004
  • A physical model experiment was conducted using a sand and gravel-filled tank model, to investigate the influence on the GPR response of LNAPL vapor phase effects in the unsaturated zone and of residual phase of LNAPL trapped in the saturated zone. Background measurements of GPR were made with only water in the tank using a fluctuating water table model. Gasoline was, then, injected into the bottom of the model tank to simulate a subsurface discharge from a leaking pipe or tank at depth, obtaining GPR data with rising and lowering of water table. Results from the experiment show the GPR sensitivity to the changes in the moisture content in the vadose zone and its effectiveness for monitoring minor fluctuation of the water table. The results also demonstrate a potential of GPR for monitoring possible vapor phase effects of volatile hydrocarbons in the vadose zone as a function of time, and for detecting the effects of residual phase of hydrocarbons in the water saturated system. In addition, the results provide the basis for a strategy that has the potential to successfully detect and delineate residual LNAPL contamination in the water-saturated system at field sites where the conditions are similar to those simulated in the physcial models described herein.

Prediction of Lahar Flow Inundation Areas Using LAHARZ_py Program: Application for the Mt. Baekdu Volcano (LAHARZ_py 프로그램을 이용한 라하르 범람지역의 예측: 백두산 화산에 적용)

  • Yun, Sung-Hyo;Chang, Cheolwoo
    • Economic and Environmental Geology
    • /
    • v.50 no.4
    • /
    • pp.277-286
    • /
    • 2017
  • Mt. Baekdu which located the border of North Korea and China, is known as a potentially active volcano in a typical mountainous terrain. A lahar on the volcanic area is one of the important hazard that can cause the loss of life and property damage. In order to comprehensively address the impact of lahar hazard at Mt. Baekdu, we simulated lahar inundation area using Laharz_py. We assumed 750 m of additional elevation for DEM to draw proximal hazard zone boundary (PHZB) of Mt. Baekdu that H/L ratio are selected 0.10. And lahar volumes for simulation were estimated to $1{\times}10^6$, $5{\times}10^6$, $1{\times}10^7$, $5{\times}10^7$, $1{\times}10^8$, $5{\times}10^8$, $1{\times}10^9m^3$, respectively. In the results, 15 streams are located near a proximal hazard zone boundary, Amnok (Yalu) river (south), Toudaosonghua river, Jinjiang river and Huapi river (west-southwest), Songjiang river, Xiaosha river, Caozi river and Sandaosongjian river (west-northwest), Toudaobai river, Erdaobai river and Sandabai river (north), Wudaobai river-1, -2, -3 (northeast) and Duman (Tumen) river (east). The results of this study can be used as basic data to make a hazard map for reduce the damage that can be caused by volcanic hazards occurred on Mt. Baekdu.

Impact of IPCC RCP Scenarios on Streamflow and Sediment in the Hoeya River Basin (대표농도경로 (RCP) 시나리오에 따른 회야강 유역의 미래 유출 및 유사 변화 분석)

  • Hwang, Chang Su;Choi, Chul Uong;Choi, Ji Sun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.11-19
    • /
    • 2014
  • This study is analyze future climate and land cover change affects behaviors for amount of streamflow and sediment discharge within basin. We used the climate forecast data in RCP 4.5 and 8.5 (2011-2100) which is opposite view for each other among RCP scenarios that are discussed for 5th report for IPCC. Land cover map built based on a social economic storyline in RCP 4.5/8.5 using Logistic Regression model. In this study we set three scenarios: one scenario for climate change only, one for land cover change only, one for Last both climate change and land cover change. It simulated amount of streamflow and sediment discharge and the result showed a very definite change in the seasonal variation both of them. For climate change, spring and winter increased the amount of streamflow while summer and fall decreased them. Sediment showed the same pattern of change steamflow. Land cover change increases the amount of streamflow while it decreases the amount of sediment discharge, which is believed to be caused by increase of impervious Surface due to urbanization. Although land cover change less affects the amount of streamflow than climate change, it may maximize problems related to the amount of streamflow caused by climate change. Therefore, it's required to address potential influence from climate change for effective water resource management and prepare suitable measurement for water resource.

Effects on the Jeju Island of Tsunamis Caused by Triple Interlocked Tokai, Tonankai, Nankai Earthquakes in Pacific Coast of Japan (일본 태평양 연안의 Tokai, Tonankai 및 Nankai의 3연동지진에 의한 지진해일이 제주도 연안에 미치는 영향)

  • Lee, Kwang-Ho;Kim, Min-Ji;Kawasaki, Koji;Cho, Sung;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.295-304
    • /
    • 2012
  • This study proposed a two-dimensional horizontal numerical model based on the nonlinear shallow water wave equations to simulate tsunami propagation and coastal inundation. We numerically investigated the possible impacts of tsunami caused by the triple interlocked Tokai, Tonankai and Nankai Earthquakes on the Jeju coastal areas, using the proposed model. The simultaneous Tokai, Tonankai and Nankai Earthquakes were created a virtual tsunami model of an M9.0 earthquake. In numerical analysis, a grid nesting method for the local grid refinement in shallow coastal regions was employed to sufficiently reproduce the shoaling effects. The numerical model was carefully validated through comparisons with the data collected during the tsunami events by 2011 East Japan Earthquake and 1983 central East Sea Earthquake (Nihonkai Chubu Earthquake). Tsunami propagation triggered by the combined Tokai, Tonanakai and Nankai, Earthquakes was simulated for 10 hours to sufficiently consider the effects of tsunami in the coastal areas of Jeju Island. The numerical results revealed that water level fluctuation in tsunami propagation is greatly influenced by water-depth change, refraction, diffraction and reflection. In addition, the maximum tsunami height numerically estimated in the coastal areas of Jeju Island was about 1.6 m at Sagye port.

Analysis of the Wave Spectral Shape Parameters for the Definition of Swell Waves (너울성파랑 정의를 위한 파랑스펙트럼의 형상모수 특성 분석)

  • Ahn, Kyungmo;Chun, Hwusub;Jeong, Weon Mu;Park, Deungdae;Kang, Tae-Soon;Hong, Sung-Jin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.6
    • /
    • pp.394-404
    • /
    • 2013
  • In the present study, the characteristics of spectral peakedness parameter $Q_p$, bandwidth parameter ${\varepsilon}$, and spectral width parameter ${\nu}$ were analyzed as a first step to define the swell waves quantitatively. For the analysis, the joint probability density function of significant wave heights and peak periods were newly developed. The MCMC(Markov Chain Monte Carlo) simulations have been performed to generate the significant wave heights and peak periods from the developed probability density functions. Applying the simulated significant wave heights and peak periods to the theoretical wave spectrum models, the spectral shapes parameters were obtained and analyzed. Among the spectral shape parameters, only the spectral peakedness parameter $Q_p$, is shown to be independent with the significant wave height and peak wave period. It also best represents the peakedness of the spectral shape, and henceforth $Q_p$ should be used to define the swell waves with a wave period. For the field verification of the results, wave data obtained from Hupo port and Ulleungdo were analyzed and results showed the same trend with the MCMC simulation results.

Development of an Efficient Method to Evaluate the Optimal Location of Groundwater Dam (최적의 지하댐 입지 선정을 위한 효율적 평가 방법 개발)

  • Jeong, Jina;Park, Eungyu
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.245-258
    • /
    • 2020
  • In this study, a data-driven response surface method using the results acquired from the numerical simulation is developed to evaluate the potential storage capacity of groundwater due to the construction of a groundwater dam. The hydraulic conductivities of alluvium and basement rock, depth and slope of the channel are considered as the natural conditions of the location for groundwater dam construction. In particular, the probability models of the hydraulic conductivities and the various types of geometry of the channel are considered to ensure the reliability of the numerical simulation and the generality of the developed estimation model. As the results of multiple simulations, it can be seen that the hydraulic conductivity of basement rock and the depth of the channel greatly influence to the groundwater storage capacity. In contrast, the slope of the channel along the groundwater flow direction shows a relatively lower impact on the storage capacity. Based on the considered natural conditions and the corresponding numerical simulation results, the storage capacity estimation model is developed applying an artificial neural network as the nonlinear regression model for training. The developed estimation model shows a high correlation coefficient (>0.9) between the simulated and the estimated storage amount. This result indicates the superiority of the developed model in evaluating the storage capacity of the potential location for groundwater dam construction without the numerical simulation. Therefore, a more objective and efficient comparison for the storage capacity between the different potential locations can be possibly made based on the developed estimation model. In line with this, the proposed method can be an effective tool to assess the optimal location of groundwater dam construction across Korea.

A System Dynamics Model for Negotiation strategy Analysis with North Korea (남북관계와 대북협상전략)

  • 곽상만
    • Korean System Dynamics Review
    • /
    • v.1 no.2
    • /
    • pp.5-31
    • /
    • 2000
  • The summit meeting of the South North Korean leaders was a turning point in the relationships between the two countries. It was followed by the Red-Cross Meeting, Minister-Level Meeting, economic agreements, which have increased the relationship more colorful in both quantities and qualities. However, the half-century period for separation was too long to overcome all the problems by only one event. The two countries have quite different social systems; one politically strong person is governing the North, while many interest groups are involved in political decision making processes in the South. In short, it would take a long time to settle down all the problems residing between the two countries. A system dynamics model is developed to describe the long term dynamics of the relations between the South and North Koreas. As a first attempt, the model focuses only on the diplomatic meeting issues between the South and North. The model aggregates diplomatic issues into 5 categories; economic issues, security issues, infrastructure, cultural issues, and past problems. It assumes that there would not be any dramatic changes between the two countries. It is a conceptual model composed of around 200 variables, and should not be used as a forecast tool. However, it captures most of the logics discussed in the papers and conferences concerning the South and North Korea relations. Many sensitivity studies and Monte Carlo simulations have shown that the simulation results matches with mental models of experts; that is the model can be used as a learning tool or as a secondary opinion until the data required by the model is collected. In order to analyze the current situation, five scenarios are simulated and analyzed; the functional approach, the conditional approach, the balanced approach, the circumstantial approach, and the strategic approach. The functional approach represents that the South makes efforts in the area where the possibility of agreement is high for the next 10 years. The conditional approach is a scenario where the South impose all difficult issues as conditions for resolving other diplomatic issues. The balanced approach is resolving the five issues with the same priorities, while the circumstantial approach is resolving issues which seem to be resolved easily. Finally, another optimum approach has been seek using the system dynamics model developed. The optimum strategy (it is named as the strategic approach) was strikingly different from other four approaches. The optimum strategy is so complicated that no one could find it with mental model(or by just insights). Considering that the system dynamic model used to find the optimum is a simplifind (maybe over simplified) version of the reality, it is concluded that a well designed system dynamics model would be of great help to resolving the complicated diplomatic problems in any kind.

  • PDF