• Title/Summary/Keyword: Simplified bond strength model

Search Result 5, Processing Time 0.02 seconds

Bond-slip effect in steel-concrete composite flexural members: Part 1 - Simplified numerical model

  • Lee, WonHo;Kwak, Hyo-Gyoung;Hwang, Ju-young
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.537-548
    • /
    • 2019
  • This paper introduces an improved numerical model which can consider the bond-slip effect in steel-concrete composite structures without taking double nodes to minimize the complexity in constructing a finite element model. On the basis of a linear partial interaction theory and the use of the bond link element, the slip behavior is defined and the equivalent modulus of elasticity and yield strength for steel is derived. A solution procedure to evaluate the slip behavior along the interface of the composite flexural members is also proposed. After constructing the transfer matrix relation at an element level, successive application of the constructed relation is conducted from the first element to the last element with the compatibility condition and equilibrium equations at each node. Finally, correlation studies between numerical results and experimental data are conducted with the objective of establishing the validity of the proposed numerical model.

Bond Slip Relationship between GFRP Plank and Cast-in-place High Strength Concrete (현장타설 고강도콘크리트와 유리섬유 FRP 판 사이의 부착슬립관계에 관한 연구)

  • Park, Chan-Young;Yoo, Seung-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2279-2286
    • /
    • 2015
  • Recently it has been actively studied that the use of hybrid GFRP-concrete structure with dual purpose of both a permanent forwork and main tensile reinforcement of GFRP plank. In applying general analysis and design technique to evaluate the performance of hybrid structures with cast-in-place high strength concrete and GFRP plank, it is essential that the characteristics of the bond slip model is identified. In this study a simplified bilinear bond slip model for hybrid structure with GFRP plank and cast-in-place high strength concrete is proposed. Maximum average bond stress of simple bond slip relationship that has been proposed in this study is 3.29MPa, initial slope is 35.66MPa/mm, the total slip is 0.23mm and interfacial fracture energy is 0.37kN/m.

A FEA Study on the Bond Property according to the Rib-Shape of Reinforcement (철근 마디형상에 따른 부착특성에 관한 해석적 연구)

  • Mihn, Joon-Soo;Hong, Geon-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.38-46
    • /
    • 2014
  • Effects of various parameters on bond property between reinforcing bar and concrete are investigated in many researchers, and various study is on going to improve the bond strength. Properties of interface between reinforcement and concrete is important role in bond property. This study analyzed the interfacial bond mechanism between deformed bar and concrete by finite element analysis (FEA) to evaluate the effect of rib shape. The FEA model in this study is simplified 2D plane stress model. The variables of analysis are selected by rib angle, rib height, rib spacing and relative rib area. From the results of analysis, reinforcing bars with rib angle $30{\sim}60^{\circ}$ showed better bond strength than the others. Bond strength ratio following to the rib height is proportionally increased up to the $0.12d_b$, but rib spacing has little effect on bond strength. The results also indicated that relative rib area can be efficiently represented the properties of deformed shape in reinforcing bars, and zigzagged rib height shape showed excellent bond strength increase.

Nonlinear modeling of flat-plate structures using grid beam elements

  • Tian, Ying;Chen, Jianwei;Said, Aly;Zhao, Jian
    • Computers and Concrete
    • /
    • v.10 no.5
    • /
    • pp.489-505
    • /
    • 2012
  • This paper presents a simplified grid beam model for simulating the nonlinear response of reinforced concrete flat-plate structures. The beam elements are defined with nonlinear behavior for bending moment and torsion. The flexural stiffness and torsional strength of the beam elements are defined based on experimental data to implicitly account for slab two-way bending effects. A failure criterion that considers the interaction between the punching strength and slab flexural behavior is incorporated in the model. The effects of bond-slip of slab reinforcement on connection stiffness are examined. The proposed grid beam model is validated by simulating large-scale tests of slab-column connections subjected to concentric gravity loading and unbalanced moment. This study also determines the critical parameters for a hysteretic model used to simulate flat-plates subjected to cyclic lateral loading.

A parametric shear constitutive law for reinforced concrete deep beams based on multiple linear regression model

  • Hashemi, Seyed Shaker;Sadeghi, Kabir;Javidi, Saeid;Malakooti, Mahmoud
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.285-294
    • /
    • 2019
  • In the present paper, the fiber theory has been employed to model the reinforced concrete (RC) deep beams (DBs) considering the reinforcing steel bar-concrete interaction. To simulate numerically the behavior of materials, the uniaxial materials' constitutive laws have been employed for reinforcements and concrete and the bond stress-slip between the reinforcing steel bars and surrounding concrete are taken into account. Because of the high sensitivity of DBs to shear deformations, the Timoshenko beam theory has been applied. The shear stress-strain (S-SS) relationship has been defined by the modified compression field theory (MCFT) model. By modeling about 300 RC panels and employing a produced numerical database, a study has been carried out to show the sensitivity of the MCFT model. This is performed based on the multiple linear regression (MLR) models. The results of this research also illustrate how different parameters such as characteristic compressive strength of concrete, yield strength of reinforcements and the percentages of reinforcements in different directions get involved in the shear behavior of RC panels without applying complex theories. Based on the results obtained from the analysis of the MCFT S-SS model, a relatively simplified numerical S-SS model has been proposed. Application of the proposed S-SS model in modeling and analyzing the considered samples indicates that there is a good agreement between the simulated and the experimental test results. The comparison between the proposed S-SS model and the MCFT model indicates that in addition to the advantage of better accuracy, the main advantage of the proposed method is simplicity in application.