• 제목/요약/키워드: Simplified Vehicle Structure Model

검색결과 16건 처리시간 0.023초

유한요소 극한해석을 이용한 단순체체모델의 붕괴거동해석 (Collapse Analysis of Simplified Vehicle Structure Models using Finite Element Limit Analysis)

  • 김현섭;허훈
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.1-9
    • /
    • 1998
  • The analysis concerns collapse behavior of framed vehicle models with the change of design parameters at the initial stage of conceptual design. Collapse analysis of a vehicle model with framed structures has been carried out using finite element limit analysis. The analysis makes sequential changes of design parameters from an initial model with frames of uniform section so as to stage then weak parts. As a result of those design changes, the collapse load of a model has been increased and the deflection toward a passenger room has been reduced. The results demonstrate the versatility of finite element limit analysis as a tool that confirms the safety of vehicle models.

  • PDF

Dynamic interaction analysis of vehicle-bridge system using transfer matrix method

  • Xiang, Tianyu;Zhao, Renda
    • Structural Engineering and Mechanics
    • /
    • 제20권1호
    • /
    • pp.111-121
    • /
    • 2005
  • The dynamic interaction of vehicle-bridge is studied by using transfer matrix method in this paper. The vehicle model is simplified as a spring-damping-mass system. By adopting the idea of Newmark-${\beta}$ method, the partial differential equation of structure vibration is transformed into a differential equation irrelevant to time. Then, this differential equation is solved by transfer matrix method. The prospective application of this method in real engineering is finally demonstrated by several examples.

Acoustical characteristic predictions of a multi-layer system of a submerged vehicle hull mounted sonar simplified to an infinite planar model

  • Kim, Sung-Hee;Hong, Suk-Yoon;Song, Jee-Hun;Kil, Hyun-Gwon;Jeon, Jae-Jin;Seo, Young-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권2호
    • /
    • pp.96-111
    • /
    • 2012
  • Hull Mounted Sonar (HMS) is a long range submerged vehicle's hull-mounted passive sonar system which detects low-frequency noise caused by machineries of enemy ships or submerged vehicles. The HMS needs a sound absorption /insulation multi-layer structure to shut out the self-noise from own machineries and to amplify signals from outside. Therefore, acoustic analysis of the multi-layer system should be performed when the HMS is designed. This paper simplified the HMS multi-layer system to be an infinite planar multi-layer model. Also, main excitations that influence the HMS were classified into mechanical, plane wave and turbulent flow excitation, and the investigations for each excitation were performed for various models. Stiffened multi-layer analysis for mechanical excitation and general multi-layer analysis for turbulent flow excitation were developed. The infinite planar multi-layer analysis was expected to be more useful for preliminary design stage of HMS system than the infinite cylindrical model because of short analysis time and easiness of parameter study.

Hyundai Motor's 4th NVH open BMT - Wind noise prediction on the HSM (Hyundai simplified model) using Ansys Fluent and LMS Virtual.Lab

  • Hallez, Raphael;Lee, Sang Yeop;Khondge, Ashok;Lee, Jeongwon
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.562-562
    • /
    • 2014
  • Assessment of aerodynamic noise is becoming increasingly important for automotive manufacturers. Flow passing a vehicle may indeed lead to high interior noise level and affect cabin comfort. Interior noise results from various mechanisms including aerodynamic fluctuations of the disturbed flow around the side mirror or pillar, hydrodynamic and acoustic loading of the car panels and windows, vibration of these panels and acoustic radiation inside the vehicle. Objective of the present study is to capture these important mechanisms in a simulation model and demonstrate the ability of the combined simulation tools Fluent / Virtual.Lab to provide accurate aerodynamic and interior noise prediction results. Previous study focused on the noise generated by the turbulence around the A-pillar structure of the HSM (Hyundai simplified model). The present study also includes the effect of the side-mirror and rain-gutter structures. Complete modeling process is presented including details on the unsteady CFD simulation and the vibro-acoustic model with absorption materials. Guidelines and best practices for building the simulation model are also discussed.

  • PDF

단순 차체 모델링을 이용한 차량 정면충돌해석 (Frontal Crashworthiness Analysis of Vehicle Using simplified Structure Modelling)

  • 김홍수;강신유;이인혁;박신희;한동철
    • 한국자동차공학회논문집
    • /
    • 제5권2호
    • /
    • pp.23-30
    • /
    • 1997
  • Modelling and crashworthiness analysis of simplified vehicle structures with beam element and nonlinear spring element to which axial and bending collapse mecha- nisms are applied are carried out. And on the basis of these analyses, two types of full car modelling and crahworthiness analyses with nonlinear spring and beam element are accomplished. The one is the full car model of which 30% of the structures are modelled with nonlinear spring and beam element, and the other 75% of whole structures. And the results are compared with those of full car analysis with shell element.

  • PDF

상세 화학반응 모델을 이용한 발사체 터빈 배기가스의 이차연소 해석의 축대칭 해석 (An Axisymmetrical Study on the Secondary Reaction of Launch Vehicle Turbine Exhaust Gas Using the Detailed Chemistry Model)

  • 김성룡;김인선
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.857-862
    • /
    • 2011
  • 상세 화학반응 모델을 이용하여 3차원 터빈 배기가스 유동을 2차원 축대칭 유동으로 가정하여 해석하였다. GRI의 35 화학종 217 단계의 상세 모델과 메탄 반응만을 간략화 시킨 11화학종 15단계 모델을 적용하여 비교하였다. 메탄 화학반응을 적용한 결과 저부에서 터빈 배기가스의 이차 연소가 나타났고 터빈 배기 노즐이 없는 경우에 비하여 온도가 600K 정도 더 높게 나타났다. 실제 3차원 문제에서는 국부적인 온도는 더 높을 수 있음을 의미한다. 화학 반응 모델에 따라 저부에서의 연소 영역과 화학종 분포도 약간 다르지만 저부에서의 이차 연소는 모두 포착하였다. 다만 간략화된 모델인 경우 엔진 플룸의 구조에 약간의 영향을 주는 것을 관측된다.

  • PDF

수소버스 수소저장용기의 측면충돌 안전성 평가방법 연구 (Study on Safety Evaluation Process for Hydrogen Storage System of Hydrogen Bus)

  • 김경진;신재호;한경희;한현민;인정민;김시우
    • 자동차안전학회지
    • /
    • 제14권4호
    • /
    • pp.113-119
    • /
    • 2022
  • The structural safety of hydrogen buses is being evaluated for the successful introduction of hydrogen buses. The crash test methodology, for example, side impact test procedure is being discussed for hydrogen bus structure safety with a compressed hydrogen storage system located under the bus floor. Thus this study describes a new experiment method for side impact test with compressed hydrogen storage system independently based on finite element analysis instead of side impact test using full hydrogen bus. A side crash procedure of conceptual compressed hydrogen storage structure was investigated and impact simulations were performed. The finite element models of hydrogen bus, simplified structures, fuel tank system and side impact moving barrier were set up and simulation results reported model performance and result comparison of three different simplified models. Computational results and research discussion proposed the fundamental test framework for safety assessment of the compressed hydrogen storage system.

수소버스 측면충돌 시험방법 연구 (Study on Side Impact Test Procedure of Hydrogen Bus)

  • 김경진;신재호;한경희;인정민;심소정;김시우
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.92-98
    • /
    • 2021
  • Recently hydrogen fuel cell buses have been deployed for the public transportations. In order to introduce buses fueled by hydrogen successfully, the research results of hydrogen bus safety should be discussed and investigated significantly. Especially, Korean government drives research in terms of various applications of hydrogen energy to replace the conventional fuel energy resources and to improve the safety evaluation. Thus it is necessary to examine vehicle crashworthiness under side impact loadings. This study was focused on the simulation result evaluation of full bus model and simplified bus model with hydrogen fuel tank module and mounting system located below floor structure due to the significance of bus side impact accidents. The finite element models of hydrogen bus, fuel tank system and side impact moving barrier were set up and simulation results reported model performance and result comparison of two side impact models. Computational results and research discussion showed the conceptual side impact framework to evaluate hydrogen bus crashworthiness.

Vibration simulation of a multi-story high-speed railway station

  • Gao, Mangmang;Xiong, Jianzhen;Xu, Zhaojun
    • Interaction and multiscale mechanics
    • /
    • 제3권4호
    • /
    • pp.365-372
    • /
    • 2010
  • Station is an important building in high-speed railway, and its vibration and noise may significantly affect the comfort of waiting passengers. A coupling vibration model for train-structure system is established to analyze and evaluate the vibration level of a typical waiting hall under dynamic train load. The motion of a four-axle vehicle with two suspension system is modeled in multi-body dynamics with linear springs and dampers employed. The station is modeled as a whole finite element structure which is 113 m in longitudinal and 163.5 m in lateral, and the stiffness of the station foundation is considered. According to the assumptions that both wheel and rail are rigid bodies and keep contact to each other in vertical direction, and the wheel/rail interaction and displacement coordination in horizontal direction is defined by the simplified Kalker creep theory, the vehicle spatial vibration model has 27 degrees-of-freedom. An overall analysis procedure is made of the train moving through the station, by which the dynamic responses of the train and the station are calculated. According to the comparison between analysis and test results, the actual connection status between different parts of the station is estimated and the vibration level of the waiting hall is evaluated.

중형 상용차용 프레스 성형 차축빔의 경량화 설계 (Structural Design of the Light Weight Axle Beam for Medium Duty Commercial Vehicle Using Hot Press)

  • 심기중;신행우;조원용;최규재;이영춘;손영호;전남진
    • 한국자동차공학회논문집
    • /
    • 제23권4호
    • /
    • pp.371-379
    • /
    • 2015
  • This paper represents the structural design of the light weight axle beam for medium duty commercial vehicle using hot press. To reduce the weight of the axle, axle beam of solid type was replaced by hollow type which was made by hot press. According to the change of axle beam structure and manufacturing method, we have to investigate the structural strength and fatigue performance. To verify the axle beam performance, the structural analysis was carried out by simplified axle beam model and various design parameters that are axle beam height, thickness and width. From the analysis results, the light weight axle beam structure was founded and applied the full model analysis. This study will be used as a guidance in development of the light weight axle for medium duty commercial vehicle.