• Title/Summary/Keyword: Simplex 법

Search Result 102, Processing Time 0.024 seconds

The Production and Characterization of a Monoclonal Antibody to Herpes simplex Virus Type 2 (Herpes simplex 2형 바이러스에 대한 단클론항체 생산과 항원 분석)

  • 최경은;이형환;조명환
    • Korean Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.97-104
    • /
    • 1997
  • Herpes simpex virus type 2 (HSV-2) infects the genital and oral mucosae of human and other animals. HSV-2 infection is a widespread health problem causing various clinical syndromes including oral, genital, and ocular lesions, viral encephalitis, and recurrent diseases. Hybridorna cell lines secreting a monoclonal antibody (mAb) against the HSV-2 were produced by fusing spleen cells of HSV-2-immunized mice with Sp2/0-AgI4 myeloma cells. One hybridoma cell line was established and its monoclonal C-2, IgM, recognized the antigens of 134, 86, and 43 kDa in western blot analysis. In SDS-P AGE analysis of HSV -2 antigens, 25 bands were separated between 3D kDa and 159 kDa. In indirect immunofluorescent assay, mAbs exhibited binding to the virus antigen expressed on Vero cell infected with HSV-2.

  • PDF

The fraction of simplex-centroid mixture designs (심플렉스 중심배열법의 일부실시에 관한 연구)

  • Kim, Hyoung Soon;Park, Dong Kwon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1295-1303
    • /
    • 2015
  • In a mixture experiment, one may be interested in estimating not only main effects but also some interactions. Main effects and interactions may be estimated through appropriate designs such as simplex-centroid designs. However, the estimability problems, implied by the sum to one functional relationship among the factors, have strong consequences on the confounding and identifiability of models for such designs. To handle these problems, we address homogeneous polynomial model based on the computational commutative algebra (CCA) instead of using $Scheff{\acute{e}}s$ canonical model which is typically used. The problem posed here is to give how to choose estimable main effects and also some low-degree interactions. The theory is tested using a fraction of simplex-centroid designs aided by a modern computational algebra package CoCoA.

Study of Shape Optimization for Automobile Lock-up Clutch Piston Design with B-spline Curve Fitting and Simplex Method (B-spline Curve Fitting 과 심플렉스법을 적용한 자동차 록업클러치 피스톤 형상최적설계에 관한 연구)

  • Kim, Choel;Hyun, Seok-Jeong;Son, Jong-Ho;Shin, Se-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1334-1339
    • /
    • 2003
  • An efficient method is developed for the shape optimization of 2-D structures. The sequential linear programming is used for minimization problems. Selected set of master nodes are employed as design variables and assigned to move towards the normal direction. After adapting the nodes on the design boundary, the B-spline curves and mesh smoothing schemes are used to maintain the finite element in good quality. Finally, a numerical implementation of optimum design of an automobile torque converter piston subjected to pressure and centrifugal loads is presented. The results shows additional weight up to 13% may be saved after the shape optimization.

  • PDF

A Study on Numerical Optimization Method for Aerodynamic Design (공력설계를 위한 수치최적설계기법의 연구)

  • Jin, Xue-Song;Choi, Jae-Ho;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.29-34
    • /
    • 1999
  • To develop the efficient numerical optimization method for the design of an airfoil, an evaluation of various methods coupled with two-dimensional Naviev-Stokes analysis is presented. Simplex method and Hook-Jeeves method we used as direct search methods, and steepest descent method, conjugate gradient method and DFP method are used as indirect search methods and are tested to determine the search direction. To determine the moving distance, the golden section method and cubic interpolation method are tested. The finite volume method is used to discretize two-dimensional Navier-Stokes equations, and SIMPLEC algorithm is used for a velocity-pressure correction method. For the optimal design of two-dimensional airfoil, maximum thickness, maximum ordinate of camber line and chordwise position of maximum ordinate are chosen as design variables, and the ratio of drag coefficient to lift coefficient is selected as an objective function. From the results, it is found that conjugate gradient method and cubic interpolation method are the most efficient for the determination of search direction and the moving distance, respectively.

  • PDF

An Concave Minimization Problem under the Muti-selection Knapsack Constraint (다중 선택 배낭 제약식 하에서의 오목 함수 최소화 문제)

  • Oh, Se-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.71-77
    • /
    • 2019
  • This paper defines a multi-selection knapsack problem and presents an algorithm for seeking its optimal solution. Multi-selection means that all members of the particular group be selected or excluded. Our branch-and-bound algorithm introduces a simplex containing the feasible region of the original problem to exploit the fact that the most tightly underestimating function on the simplex is linear. In bounding operation, the subproblem defined over the candidate simplex is minimized. During the branching process the candidate simplex is splitted into two one-less dimensional subsimplices by being projected onto two hyperplanes. The approach of this paper can be applied to solving the global minimization problems under various types of the knapsack constraints.

Verification of Direct Back Analysis Software Using FLAC as a Subroutine (FLAC을 이용한 직접법 역해석 소프트웨어의 개발과 검증)

  • Kim Chee-Hwan
    • Tunnel and Underground Space
    • /
    • v.15 no.5 s.58
    • /
    • pp.344-351
    • /
    • 2005
  • Direct back analysis software is coded based on Simplex method using FLAC as a subroutine. For the verification of the software, 12 different cases are assumed combining various displacements in different measuring locations around a tunnel. The number of displacements for cases varies from 3 to 240. It is verified that the exact elasticity and the primary stress state of rock around a tunnel could be found through iterative calculation regardless of the locations and number of displacements and initial values needed for the direct back analysis.

Application of the 18S Ribosomal DNA (rDNA) PCR-RFLP Technique for the Differential Diagnosis of Anisakidosis (고래회충유충증 감별 진단을 위한 18S ribosomal DNA (rDNA) PCR-RFLP 법 적용)

  • Kim, Sun-Mee;Cho, Min-Kyung;Yu, Hak-Sun;Cha, Hee-Jae;Ock, Mee-Sun
    • Journal of Life Science
    • /
    • v.19 no.9
    • /
    • pp.1328-1332
    • /
    • 2009
  • Anisakidosis is caused by anisakid nematodes (family Anisakidae) larvae which can cause not only direct tissue damage but also a severe allergic response related to excretory-secretion products. Lots of different species of anisakid larvae, including Anisakis simplex, Contracaecum, Goezia, Pseudoterranova, and Hysterothylacium, cause the anisakidosis. But it is difficult to diagnosis the species of larvae since the morphologies of larval anisakid nematodes are almost indistinguishable. In order to diagnosis the differential infections of larval anisakid nematodes, polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) of 18S rDNA - was conducted. Three major species of anisakid larvae including A. simplex, C.ontracaecum spp, and Goezia spp. were collected from mackerel (Scomber japonicus), mullet (Mugil cephalus), founder (Paralichthys olivaceus), eel (Astroconger myriaster) and red sea bream (Pagrus major). PCR amplified 18S rDNA from each species of anisakid larvae was digested with eight restriction enzymes including Taq I, Hinf I, Hha I, Alu I, Dde I, Hae III, Sau96 I, and Sau3A I. The original sizes of PCR amplified 18S rDNA were 2.0Kb in both anisakid larvaes and Goezia. Restrction enzymes including Hinf 1, Alu 1, Hha I, Dde 1 and Hae III cut differently and distinguished the A. simplex and Contracaecum type C'. However, Contracaecum type A showed two different restriction enzyme cutting patterns by Taq 1, Hinf I, Alu 1, and Dde 1. One of the patterns was the same as those of A. simplex, Contracaecum type C' and Goezia and the other was unique. These results suggest that PCR-RFLP pattern by Hinf 1, Alu 1, Hae I, Dde 1 and Hae III can be applied to differential diagnosis of human infection with A. simplex and Contracaecum type C'. Contracaecum type A needs further study of classification by morphological characteristics and genetic analysis.

Magnetoencephalography Source Localization using Improved Downhill Simplex Method in Frequency Domain (개선된 다운힐 심플렉스 법을 이용한 주파수 영역에서의 뇌자도 신호원 추정)

  • Kim, Byeong-Jun;An, Kwang-Ok;Lee, Chany;Jung, Hyun-Kyo
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.231-238
    • /
    • 2008
  • Nelder-Mead downhill simplex method (DSM), a kind of deterministic optimization algorithms, has been used extensively for magnetoencephalography(MEG) dipolar source localization problems because it dose not require any functional differentiation. Like many other deterministic algorithms, however, it is very sensitive to the choice of initial positions and it can be easily trapped in local optima when being applied to complex inverse problems with multiple simultaneous sources. In this paper, some modifications have been made to make up for DSM's limitations and improve the accuracy of DSM. First of all, initial point determination method for DSM using magnetic fields on the sensor surface was proposed. Secondly, Univariant-DSM combined DSM with univariant method was proposed. To verify the performance of the proposed method, it was applied to simulated MEG data and practical MEG measurements.

An Algorithm for the Singly Linearly Constrained Concave Minimization Problem with Upper Convergent Bounded Variables (상한 융합 변수를 갖는 단선형제약 오목함수 최소화 문제의 해법)

  • Oh, Se-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.5
    • /
    • pp.213-219
    • /
    • 2016
  • This paper presents a branch-and-bound algorithm for solving the concave minimization problem with upper bounded variables whose single constraint is linear. The algorithm uses simplex as partition element. Because the convex envelope which most tightly underestimates the concave function on the simplex is uniquely determined by solving the related linear equations. Every branching process generates two subsimplices one lower dimensional than the candidate simplex by adding 0 and upper bound constraints. Subsequently the feasible points are partitioned into two sets. During the bounding process, the linear programming problems defined over subsimplices are minimized to calculate the lower bound and to update the incumbent. Consequently the simplices which do certainly not contain the global minimum are excluded from consideration. The major advantage of the algorithm is that the subproblems are defined on the one less dimensinal space. It means that the amount of work required for the subproblem decreases whenever the branching occurs. Our approach can be applied to solving the concave minimization problems under knapsack type constraints.