• Title/Summary/Keyword: Simple shear test

Search Result 188, Processing Time 0.028 seconds

Experimental Study on Shear Performance of RC Beams with Electric Arc Furnace Oxidizing Slag Aggregates (전기로 산화슬래그 골재를 사용한 RC 보의 전단 성능에 관한 실험적 연구)

  • Lee, Yong Jun;Jeong, Chan Yu;Lee, Bum Sik;Kim, Sang Woo;Kim, Kil Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.40-48
    • /
    • 2012
  • This study evaluates the shear performance of reinforced concrete beams with electric arc furnace oxidizing slag aggregates generated from iron manufacture. A total of six simple supported specimens were cast and tested in shear. The main test variables were the type of aggregates and the amount of shear reinforcements. The specimens under four point loading had a shear span-to-depth ratio of 2.5 and a rectangular section with a width of 200mm and an effective depth of 300mm. Existing equations to predict the shear strength of the specimens were used in this study. Furthermore, a finite element analysis using shear analytical model was performed to trace the shear behavior of the specimens with electric arc furnace oxidizing aggregates. From the test results, the shear performance of specimens with electric arc furnace oxidizing aggregates is similar to that of specimens with natural aggregates.

Evaluation of shear lag parameters for beam-to-column connections in steel piers

  • Hwang, Won-Sup;Kim, Young-Pil;Park, Yong-Myung
    • Structural Engineering and Mechanics
    • /
    • v.17 no.5
    • /
    • pp.691-706
    • /
    • 2004
  • The paper presents shear lag parameters for beam-to-column connections in steel box piers. Previous researches have analyzed beam-to-column connections in steel piers using a shear lag parameter ${\eta}_o$ obtained from a simple beam model, which is not based on a reasonable design assumption. Instead, the current paper proposes a cantilever beam model and has proved the effectiveness through theoretical and experimental studies. The paper examines the inaccuracy of the previous researches by estimating the effective width, the width-span length ratio L/b, and the sectional area ratio S of a cantilever beam. Two different shear lag parameters are defined using the cantilever model and the results are compared each other. The first type of shear lag parameter ${\eta}_c$ of a cantilever beam is derived using additional moments from various stress distribution functions while the other shear lag parameter ${\eta}_{eff}$ of a cantilever beam is defined based on the concept of the effective width. An evaluation method for shear lag stresses has been investigated by comparing analytical stresses with test results. Through the study, it could be observed that the shear lag parameter ${\eta}_{eff}$ agrees with ${\eta}_c$ obtained from the $2^{nd}$ order stress distribution function. Also, it could be observed that the shear lag parameter ${\eta}_c$ using the $4^{th}$ order stress distribution function almost converges to the upper bound of test results.

A Fair Investigation on Safety Factor of Slope by Model Tests (모형실험에 의한 사면 안전율의 적정성 연구)

  • Kim, Yong-Sik;Park, Choon-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1313-1323
    • /
    • 2008
  • The purpose of this study is to understand behaviors of slopes and determine soil parameters of slopes through the triaxial compression test and the direct shear test. Following results were obtained by comparing and analyzing model tests and analysis programs of slope stability. The safety factors of the Bishop's simple method, the Morgenstern Price method, the Spencer method and the GLE method were similar to each other but safety factors of the Fellenius method and the Janbu method were different from the formers. It was found that the Bishop's simple method, the Morgenstern Price method, the Spencer method and the GLE method could be used for design but attention should be paid to the Fellenius method and the Janbu method since they underestimated safety factor.

  • PDF

Effect of joining methods on the failure of aluminum honeycomb sandwich joints under shear loading (전단하중을 받는 알루미늄 하니콤 샌드위치의 체결방식이 체결부의 파손에 미치는 영향 연구)

  • Park, Yong-Bin;Kweon, Jin-Hwe;Choi, Jin-Ho;Cho, Hyun-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.643-651
    • /
    • 2011
  • An experimental study on the failure of aluminum sandwich joints under shear loading was conducted. A total of 60 specimens including three different insert types and two different potting types were fabricated and tested. The test results showed that the through-clearance type of joint fails at the highest load among insert type joints. The failure load of the potted joints with the dimple washer increased by 10% compared to the simple potted joints. As expected, the shear failure load became higher in accordance with the face thickness increase. It was also found that the upper face in contact with the loading tool is more dominant over the failure load.

Evaluation of Physical and Mechanical Properties of Non-certificated Laminated Veneer Lumber (LVL) Circulated in Domestic Lumber Market

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.429-436
    • /
    • 2011
  • The selected physical and mechanical properties of non-certificated LVL circulated in domestic lumber market were investigated and compared to relevant standards. The tested LVL passed the moisture content and the soaking delamination rate limit as per domestic (KS) and Japanese standard (JAS). The evaluated mechanical properties were flatwise/edgewise bending strength, modulus of elasticity (MOE), horizontal shear and compressive strength. The 30 mm-thick LVL showed significantly higher bending strength than that of the 25 mm-thick LVL. The modulus of elasticity (MOE) showed same tendency in the results of bending strength. The edgewise bending strength and MOE were higher than that of flatwise bending strength and MOE. The horizontal shear strength values were also showed similar results to bending strength values. The tested results were compared each other and each products were graded according to JAS 701 grade specification. The failure mode of LVL in bending test showed the similar failure mode of solidwood that failed in a simple tension manner (splintery tension). The glue line failure was severe in 25 mm-thick specimens due to concentration of shear stress in layer discontinuity containing small voids and starved glue lines. In horizontal shear strength test, failure mode of LVL showed the typical horizontal shear failure. Compressive specimens failed with fiber crushing in company with apparent delamination that splitted along the length of the specimens. From the results, the complete bonding between lamination and consistency in thin veneer layer were considered as a critical factor in the mechanical properties of LVL. Moreover, the standard test procedure and specification for non-certificated LVL should be required to check the performance of uncertificated materials.

Shear performance assessment of steel fiber reinforced-prestressed concrete members

  • Hwang, Jin-Ha;Lee, Deuck Hang;Park, Min Kook;Choi, Seung-Ho;Kim, Kang Su;Pan, Zuanfeng
    • Computers and Concrete
    • /
    • v.16 no.6
    • /
    • pp.825-846
    • /
    • 2015
  • In this study, shear tests on steel fiber reinforced-prestressed concrete (SFR-PSC) members were conducted with test parameters of the concrete compressive strength, the volume fraction of steel fibers, and the level of effective prestress. The SFR-PSC members showed higher shear strengths and stiffness after diagonal cracking compared to the conventional prestressed concrete (PSC) members without steel fibers. In addition, their shear deformational behavior was measured using the image-based non-contact displacement measurement system, which was then compared to the results of nonlinear finite element analyses (NLFEA). In the NLFEA proposed in this study, a bi-axial tensile behavior model, which can reflect the tensile behavior of the steel fiber-reinforced concrete (SFRC) in a simple manner, was introduced into the smeared crack truss model. The NLFEA model proposed in this study provided a good estimation of shear behavior of the SFRPSC members, such as the stiffness, strengths, and failure modes, reflecting the effect of the key influential factors.

Crack constitutive model for the prediction of punching failure modes of fiber reinforced concrete laminar structures

  • Ventura-Gouveia, A.;Barros, Joaquim A.O.;Azevedo, Alvaro F.M.
    • Computers and Concrete
    • /
    • v.8 no.6
    • /
    • pp.735-755
    • /
    • 2011
  • The capability of a multi-directional fixed smeared crack constitutive model to simulate the flexural/punching failure modes of fiber reinforced concrete (FRC) laminar structures is discussed. The constitutive model is implemented in a computer program based on the finite element method, where the FRC laminar structures were simulated according to the Reissner-Mindlin shell theory. The shell is discretized into layers for the simulation of the membrane, bending and out-of-plane shear nonlinear behavior. A stress-strain softening diagram is proposed to reproduce, after crack initiation, the evolution of the normal crack component. The in-plane shear crack component is obtained using the concept of shear retention factor, defined by a crack-strain dependent law. To capture the punching failure mode, a softening diagram is proposed to simulate the decrease of the out-of-plane shear stress components with the increase of the corresponding shear strain components, after crack initiation. With this relatively simple approach, accurate predictions of the behavior of FRC structures failing in bending and in shear can be obtained. To assess the predictive performance of the model, a punching experimental test of a module of a façade panel fabricated with steel fiber reinforced self-compacting concrete is numerically simulated. The influence of some parameters defining the softening diagrams is discussed.

Weldability and properties of lap joints by pin FSW with 1050 Al sheet (1050 Al판재의 핀 마찰 교반용접에 의한 실험적 연구)

  • Jang, Seok-Ki;Park, Jong-Seek;Han, Min-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.394-400
    • /
    • 2007
  • The properties and weldability of lap joints by PFSW with 1050 Al sheet was investigated according to tool shape. dimension and welding condition. Tensile shear test was carried out for lap jointed specimen, and the hardness in the joint regions was examined. Moreover interfacial joining length, metallograph and failure location of the lap-jointed cross section were discussed. Two tool types were a simple cylindrical type and a notched cylindrical type. Under joining conditions such as plunging depth of 2.2mm. rotating speed of 1600rpm and dwelling time of 3s, the tensile shear strength of lap-jointed specimen by the notched type tool was superior to that by simple cylindrical type tool. The maximum tensile shear load of lap jointed specimen was 5807N. Optimal dimensions of the notched type tool were as follows : diameters of the shoulder and pin were $18{\phi}mm$ and $10{\phi}mm$, and pin length was 2.2mm.

A Simple Constitutive Model for Soil Liquefaction Analysis (액상화 해석을 위한 간단한 구성모델)

  • Park Sung-Sik;Kim Young-Su;Byrne P. M;Kim Dae-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.27-35
    • /
    • 2005
  • Several damages due to large displacement caused by liquefaction have been reported increasingly. Numerical procedures based on effective stress analysis are therefore necessary to predict liquefaction-induced deformation. In this paper, the fully coupled effective stress model called UBCSAND is proposed to simulate pore pressure rise due to earthquake or repeated loadings. The proposed model is a modification of the simple perfect elasto-plactic Mohr-Coulomb model, and can simulate a continuous yielding by mobilizing friction and dilation angles below failure state. Yield function is defined as the ratio of shear stress to mean normal stress. It is radial lines on stress space and has the same shape of Mohr-Columob failure envelope. Plastic hardening is based on an isotropic and kinematic hardening rule. The proposed model always causes plastic deformation during loading and reloading but it predicts elastic unloading. It is verified by capturing direct simple shear tests on loose Fraser River sand.

Measurement of Springback Ratio Using a Bend Rig (개선된 굽힘 시험장치를 이용한 스프링백 비의 측정)

  • 김용우;공성일;남진영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.410-415
    • /
    • 2002
  • A winding bend rig is designed to overcome the drawbacks of the conventional bend rig for measuring springback ratio of a strip or plate. Using the present bend rig, springback ratios are measured and they are compared with ones that obtained by using simple beam theory and tensile test. Theoretically, there should be no difference between the two values as far as the simple beam theory holds true for the bending test. But, within the scope of our tests, there is a difference of 5% between the two values since the specimen under bend test is subjected to a transverse shear force and friction force on the surface of the specimen.

  • PDF