• Title/Summary/Keyword: Simple sequence repeat (SSR)

Search Result 128, Processing Time 0.039 seconds

Genetic diversity and population structure among accessions of Perilla frutescens (L.) Britton in East Asia using new developed microsatellite markers

  • Sa, Kyu Jin;Choi, Ik?Young;Park, Kyong?Cheul;Lee, Ju Kyong
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1319-1329
    • /
    • 2018
  • SSRs were successfully isolated from the Perilla crop in our current study, and used to analyze Perilla accessions from East Asia. Analyses of the clear genetic diversity and relationship for Perilla crop still remain insufficient. In this study, 40 new simple sequence repeat (SSR) primer sets were developed from RNA sequences using transcriptome analysis. These new SSR markers were applied to analyze the diversity, relationships, and population structure among 35 accessions of the two cultivated types of Perilla crop and their weedy types. A total of 220 alleles were identified at all loci, with an average of 5.5 alleles per locus and a range between 2 and 10 alleles per locus. The MAF (major allele frequency) per locus varied from 0.229 to 0.943, with an average of 0.466. The average polymorphic information content (PIC) value was 0.603, ranging from 0.102 to 0.837. The genetic diversity (GD) ranged from 0.108 to 0.854, with an average of 0.654. Based on population structure analysis, all accessions were divided into three groups: Group I, Group II and the admixed group. This study demonstrated the utility of new SSR analysis for the study of genetic diversity and population structure among 35 Perilla accessions. The GD of each locus for accessions of cultivated var. frutescens, weedy var. frutescens, cultivated var. crispa, and weedy var. crispa were 0.415, 0.606, 0.308, and 0.480, respectively. Both weedy accessions exhibited higher GD and PIC values than their cultivated types in East Asia. The new SSR primers of Perilla species reported in this study may provide potential genetic markers for population genetics to enhance our understanding of the genetic diversity, genetic relationship and population structure of the cultivated and weedy types of P. frutescens in East Asia. In addition, new Perilla SSR primers developed from RNA-seq can be used in the future for cultivar identification, conservation of Perilla germplasm resources, genome mapping and tagging of important genes/QTLs for Perilla breeding programs.

Evaluation of Genetic Differentiation of Albizia lucida Populations from Eastern Region of the Indian Sub-continent by ISSR Markers

  • Aparajita, Subhashree;Rout, G.R.
    • Journal of Forest and Environmental Science
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2008
  • Level and distribution of genetic diversity in seven populations of Albizia lucida Benth. in eastern region of the Indian sub-continent were estimated using ISSR markers. Relatively higher level of genetic diversity within populations was observed in seven populations of A. lucida (mean of 0.38). From the result of AMOVA, majority of genetic diversity was allocated within populations (96.2%) resulting in a moderate degree of population differentiation. The observed distribution pattern of I-SSR variant among the populations was coincided with the typical pattern of long-lived woody tree species. Genetic relationships among the populations, reconstructed by UPGMA method, revealed two genetic groups. The population of Anugul and Bargarh turned out to be the most closely related despite a distance location between them. These formations will be of great value in the development of conservation plans for species exhibiting high levels of genetic differentiation due to fragmentation, such as indication of conservation unit size, which populations should be chosen as priority in conservation plans and which samples should be introduced in areas with a low number of individuals of A. lucida.

  • PDF

Identification of Salix caprea × Salix gracilistyla Using Nuclear DNA Marker (핵 DNA 마커를 이용한 호랑버들과 갯버들 종간 교잡종 식별)

  • Han-Na Seo;Hyo-In Lim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.66-66
    • /
    • 2022
  • 속성수로 활용되는 버드나무속 식물들은 생식기관과 영양기관의 성장 시기가 달라 형태적 특성 평가를 위해 수년간의 조사 기간이 요구된다. 따라서 바이오매스 우수 버드나무속 교잡종 육성의 성공 여부를 조기 판별하기 위한 식별 기술이 필요하다. DNA 마커는 식물의 생장단계와 관련 없이 탐색할 수 있으며 환경에 영향을 받지 않는 장점이 있다. 식물의 계통 분류 시 주로 사용되는 엽록체 DNA는 유전자 염기서열의 변이가 비교적 크지 않은 장점이 있으나 대부분의 활엽수에서 모계를 통해 유전되는 특징이 있다. 하지만 종간 교잡종의 식별은 각각의 부모종과 구분할 수 있어야 하므로 본 연구는 엽록체 DNA가 아닌 핵 DNA를 대상으로 분석하였다. 본 연구의 목적은 호랑버들을 암나무로 갯버들을 수나무로 인공교배하여 육성된 종간 교잡종을 식별하는 핵 DNA 마커를 탐색하는 것이다. 이를 위해 버드나무속에서 개발된 총 35개의 nSSR (nuclear Simple Sequence Repeat) 마커를 대상으로 호랑버들과 갯버들, 종간 교잡종의 식별 가능성을 평가하였다. 분석 결과 호랑버들과 갯버들, 종간 교잡종 간 차이를 나타내는 2개의 핵 DNA 마커를 선발하였다. 따라서 선발된 핵 DNA 마커를 활용하여 호랑버들과 갯버들, 종간 교잡종의 조기 식별에 활용이 가능할 것으로 사료된다.

  • PDF

Identification of SNPs Related to 19 Phenotypic Traits Using Genome-wide Association Study (GWAS) Approach in Korean Wheat Mini-core Collection

  • Yuna Kang;Yeonjun Sung;Seonghyeon Kim;Changsoo Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2020.06a
    • /
    • pp.120-120
    • /
    • 2020
  • Based on the simple sequence repeat (SSR) marker, a Korean wheat core collection were established with 616 wheat accessions. Among them, the SNP genotyping for the entire genome was performed using DNA chip array to clarify the whole genome SNP profiles. Consequently, a total of 35,143 SNPs were found and we re-established a mini-core collection with 247 accessions. Population diversity and phylogenetic analysis revealed genetic diversity and relationships from the mini core set. In addition, genome-wide association study (GWAS) was performed on 19 phenotypic traits; ear type, awn length, culm length, ear length, awn color, seed coat color, culm color, ear color, loading, leaf length, leaf width, seeding stand, cold damage, weight, auricle, plant type, heading stage, maturation period, upright habit, and degree of flag leaf. The GWAS was performed using the fixed and random model circulating probability unification (FarmCPU), which identified 14 to 258 SNP loci related to 19 phenotypic traits. Our study indicates that this Korean wheat mini-core collection is a set of germplasm useful for basic and applied research with the aim of understanding and exploiting the genetic diversity of Korean wheat varieties.

  • PDF

Classification of Allium monanthum and A. grai by ISSR Markers (ISSR 마커를 이용한 달래와 산달래의 분류)

  • Lee, Sais-Beul;Kim, Chang-Kil;Oh, Jung-Yeol;Kim, Kyung-Min
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.600-609
    • /
    • 2011
  • One hundred twenty two accessions of 6 species in genus Allium were collected throughout 5 regions of Korea. Their genetic relationship was investigated by using inter simple sequence repeat (ISSR) markers. The morphological analysis was measured for 6 quantitative and quantified for 1 qualitative trait. ISSR analysis obtained a total of 370 polymorphic bands by using seventeen primers. The cluster analysis of genus Allium based on morphological data could identify three groups. The accessions of Allium belonged to the Allium monanthum clustered into five groups at genetic distance ranging from 0.94 on the base of ISSR analysis. Correlation analysis between morphological and ISSR analysis showed low coefficient(r = 0.036). These markers are thought to be used in research of molecular markers for classification and cross breeding of Allium monanthum and A. grai.

Identification of Molecular Markers for Photoblastism in Weedy Rice

  • Lee, Hyun-Sook;Ahn, Sang-Nag;Sasaki, Kazuhiro;Chung, Nam-Jin;Choi, Kwan-Sam;Sato, Tadashi
    • Korean Journal of Breeding Science
    • /
    • v.42 no.2
    • /
    • pp.144-150
    • /
    • 2010
  • The objective of this study was to map gene/QTL for photoblastism in a weedy rice (photoblastic rice: PBR) using DNA markers. Light-induced effect on germination of seeds was compared among three accessions (Oryza sativa L.), PBR, Milyang 23 and Ilpum. Results showed that PBR seeds started to show photoblastism during seed development, different from Ilpum and Milyang 23. Frequency distribution of germination in the F4 lines from crosses between Ilpum and PBR and, Milyang 23 and PBR revealed bimodal distributions suggesting that photoblastism was controlled by a few genes. Bulked segregant analysis using $F_4$ populations derived from the above two crosses was conducted to identify gene/QTL for photoblastism. Two QTL were identified on chromosomes 1 and 12 explaining 11.2 and 12.8% of the phenotypic variance, respectively. Two QTL were further mapped between two SSR markers, RM8260 and RM246 on chromosome 1, and between RM270 and 1103 on chromosome 12. It is noteworthy that two QTL for photoblastism were colocalized with the QTL for seed dormancy reported in the previous QTL studies. The clustering of two genes for photoblastism and dormancy possibly indicates that these regions constitute rice phytochrome gene clusters related to germination. Because PBR has a low degree of dormancy, a pleiotropic effect of a single gene controlling dormancy and photoblastism can be ruled out. The linked markers will provide the foundation for positional cloning of the gene.

Characteristics of Suillus bovinus fairy rings and genets associated with thinning intensity in Pinus densiflora forests (소나무림에서 간벌강도에 따른 황소비단그물버섯(Suillus bovinus)의 균환과 genet 특성)

  • Park, Yong-Woo;Lee, Hwa-Yong;Koo, Chang-Duck
    • Journal of Mushroom
    • /
    • v.18 no.2
    • /
    • pp.125-134
    • /
    • 2020
  • To study the fairy ring and genet characteristics of Suillus bovinus based on thinning intensity in Pinus densiflora forests, a simple sequence repeat (SSR) analysis was performed on the fruiting bodies of the plant. In pine wood production forests, the thinning strengths applied were 34%, 45%, and 60%. As a result, the number of fruiting bodies in the 34% treatment area was 104, which was higher than that in the other treatment areas. In the 34% treatment area, fruiting bodies occurred in a circular shape, within a diameter of approximately 5 meters (m) of the trees. In the 45% treatment area, the fruiting bodies were randomly distributed between 6 to 7 m from the trees, while in the 60% treatment, fruiting bodies occurred in a narrow oval shape, 6 m from the trees. In the control area, two fruiting bodies were present around the root collar. Hybridity was confirmed in the SSR markers of Sb-CA1 and Sb-CA3. The fruiting bodies in the 34% treatment area had a He / Ho value lower than that in the 60% treatment area. In fruiting bodies of the 34% treatment area, a total of 20 genets were identified, with an average size of 14±11 ㎡; 60% of genets were formed by a single fruiting body. In fruiting bodies of the 45% treatment area, a total of 6 genets were identified and the average size was 11±12 ㎡; 50% of genets were formed by a single fruiting body. In fruiting bodies of the 60% treatment area, a total of 10 genets were identified, with an average size of 1.1±0.8 ㎡; 70% of genets were formed by a single fruiting body. Thus, the formation ratio of a new genet increases when the thinning intensity is increased.

High-density genetic mapping using GBS in Chrysanthemum

  • Chung, Yong Suk;Cho, Jin Woong;Kim, Changsoo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.57-57
    • /
    • 2017
  • Chrysanthemum is one of the most important floral crop in Korea produced about 7 billion dollars (1 billion for pot and 6 billion for cutting) in 2013. However, it is difficult to breed and to do genetic study because 1) it is highly self-incompatible, 2) it is outcrossing crop having heterozygotes, and 3) commercial cultvars are hexaploid (2n = 6x = 54). Although low-density genetic map and QTL study were reported, it is not enough to apply for the marker assisted selection and other genetic studies. Therefore, we are trying to make high-density genetic mapping using GBS with about 100 $F_1s$ of C. boreale that is oHohhfd diploid (2n = 2x = 18, about 2.8Gb) instead of commercial culitvars. Since Chrysanthemum is outcrossing, two-way pseudo-testcross model would be used to construct genetic map. Also, genotype-by-sequencing (GBS) would be utilized to generate sufficient number of markers and to maximize genomic representation in a cost effective manner. Those completed sequences would be analyzed with TASSEL-GBS pipeline. In order to reduce sequence error, only first 64 sequences, which have almost zero percent error, would be incorporated in the pipeline for the analysis. In addition, to reduce errors that is common in heterozygotes crops caused by low coverage, two rare cutters (NsiI and MseI) were used to increase sequence depth. Maskov algorithm would also used to deal with missing data. Further, sparsely placed markers on the physical map would be used as anchors to overcome problems caused by low coverage. For this purpose, were generated from transcriptome of Chrysanthemum using MISA program. Among those, 10 simple sequence repeat (SSR) markers, which are evenly distributed along each chromosome and polymorphic between two parents, would be selected.

  • PDF

Genetic Polymorphism of Microsatellite Markers in Panax ginseng C.A. Meyer (인삼 (Panax ginseng C.A. Meyer)의 Microsatellite 마커에 대한 유전적 다형성과 특성 규명)

  • Park, Sun-Wha;Hyun, Young-Se;Chung, Ki-Wha
    • Journal of Ginseng Research
    • /
    • v.33 no.3
    • /
    • pp.199-205
    • /
    • 2009
  • Ginseng (Panax ginseng C.A. Meyer) is one of the most important medicinal plants in East Asia. Microsatellite or simple sequence repeat (SSR) markers are used in obtaining genetic analysis and authentication in many plants. The present study examined five microsatellites in conjunction with P. ginseng in Korea. The total observed allelic number was 17 (mean = 3.4), and gene diversities varied from 0.078 to 0.543 with an average of 0.314. Through a combined analysis of five loci in 100 ginseng samples, 44 different combined genotypes were observed. Expected and observed heterozygosites ranged from 0.077 to 0.541 (mean = 0.313) and 0.040 to 0.130 (0.083), respectively. All examined loci exhibited deficiency of heterozygosity and deviation from the Hardy-Weinberg equilibrium. Such results may be explained by the non-random mating and inbreeding that has occurred for several hundred years. These microsatellite markers could be used for the study of molecular genetics and the establishment of DNA marker database, as well as authentication of ginseng species and chromosomal mapping of QTL loci in P. ginseng.

Simple Sequence Repeat Markers Linked to Quantitative Trait Loci Controlling Seed Weight, Protein and Oil Contents in Soybean (콩에서 종실의 무게와 oil 및 단백질 함량을 조절하는 양적 형질 유전자좌와 연관된 simple sequence repeat marker)

  • Kim, Hyeun-Kyeung;Kang, Sung-Taeg;Choung, Myoung-Gun;Jung, Chan-Sik;Oh, Ki-Won;Baek, In-Youl;Son, Beung-Gu
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.949-954
    • /
    • 2006
  • Soybean [Glycine max (L.) Merr.] is an important crop, accounting for 48% of the world market in oil crops. Improvement of the quality and quantity of soybean seed constituents is one of the most important objectives in soybean breeding. Protein content and seed size are important properties to determine the quality of tofu and soy sprouts respectively. The objective of this study was to identify quantitative trait loci (QTLs) that control seed weight, protein and oil content in soybean. The 117 $F_{2:10}$ recombinant inbred lines (RlL) developed from a cross of 'Keunolkong' and 'Shinpaldalkong' were used. Narrow-sense heritability estimates based on a plot mean on seed weight, protein and oil content were 0.8, 0.78 and 0.71, respectively. Four independent QTLs for seed weight were identified from linkage group (LG) F, I and K. Five QTL for protein content were located on LG D1b, E, H, I and L. Oil content was related with six QTLs located on LG D1b, E, G, I, J and N. Protein and oil content have three common QTLs on LG D1b, E and I. Thus, we identified major loci improving soybean seed quality.