• Title/Summary/Keyword: Simple planetary gear

Search Result 13, Processing Time 0.014 seconds

Power-flow Independent Modeling of Vehicle Powertrain (Power-flow에 독립적인 파워트레인 모델링)

  • 최기영;이승종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.267-270
    • /
    • 2001
  • A lot of efforts have been made to analyze the performance of the vehicle equipped with automatic transmission through simulation. It might be necessary to understand the different types of transmissions, i.e., different power flows, for different models. If there is a module that can be applied to different types of automatic transmission, it could be helpful to transmission-related engineers. This study has started up from this idea. The common bond graph has been obtained from several types of the automatic transmission. The overall generalized equations and kinematic constraint equations have been derived using virtual power sources on common bond graph. They are used to derive state equations and constraints. These equations have been applied as an application to the vehicle equipped with two simple planetary gear set type of Ravigneaux gear type automatic transmission. The state equation, kinematic constraints, and dynamic constraints have been derived in every gear and shift operation using overall generalized equations and kinematic constraint equations. Simulations for constraint speed running, standing-start running, rolling-start running, and LA-4 mode have been conducted to analyze the performance of the vehicle powertrain using GVPS(Generalized Vehicle Powertrain Simulation) program wit pull down menus.

  • PDF

Analysis of the Efficiency of the Compound-split Hybrid Systems (복합 유성 기어로 구성된 하이브리드 시스템 효율 분석)

  • Kim, Nam-Wook;Yang, Ho-Rim;Cho, Sung-Tae;Park, Yeong-Il;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.118-124
    • /
    • 2007
  • The efficiency of the hybrid systems which are composed of compound planetary gear sets depend on the amount of the recirculating energy among the motors and battery. This paper studies the analysis of the system efficiency with the parameters, ${\alpha},\;{\beta},\;{\gamma_a},\;{\gamma_b}$ and $\gamma_s$. The efficiency of the systems and the relative torque, speed and power of the power resources are represented by these parameters. The recuperating parameter $\kappa$ which makes the systems generalized is introduced, so the efficiencies of the modes such as the hybrid mode, the engine mode, the motoring mode and the recuperating mode are analyzed with simple equations. The tendency of the system efficiency according to the variations of the $\gamma_s$ and $\kappa$ are studied, by which it can be possible to reduce the loss of the power because the strategies for avoiding the singular speed ratio $\gamma_s$ are helpful for the system efficiency and specific value of $\kappa$ can increase the efficiency of the systems.

Design of Gerotor with Pin-tooth Inner Rotor (핀치형 내부로터의 제로터 설계)

  • Lee, Sung-chul
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.64-67
    • /
    • 2020
  • In the conventional gerotor design, the circular arc tooth of the outer rotor is first introduced, and then the inner rotor profile is generated by simulating the outer rotor motion while the inner rotor is fixed. The profile generation of tooth meshing exhibits relativity; therefore, the outer rotor profile can be generated by the movement of the inner rotor. In this study, we propose the design of a gerotor with a pin-tooth inner rotor. First, the pin-tooth inner rotor is devised, and then the outer rotor profile is generated. The profile of the inner rotor is simply composed of equally arranged pins along a circle. The root of the inner rotor is designed as a conjugated arc of two pins. The trajectory of the pin center is obtained by the inner rotor operation, and then the outer rotor profile is determined as a parallel curve of the trajectory. In this gerotor design, the inner rotor has a simple configuration, and contact occurs between the pin parts of the inner rotor and the whole profile of the outer rotor. This affects the material selection and machining process. The pin tooth can be used to design the outer and inner rotors, enabling a double gerotor mechanism corresponding to a planetary gear system.