• Title/Summary/Keyword: Simple planetary gear

Search Result 13, Processing Time 0.023 seconds

A Study on Kinematic Characteristics of Planetary Gear Train (유성기어열의 기구학적 특성분석에 관한 연구)

  • 박세환;신중호;윤호업;김대원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.643-646
    • /
    • 1997
  • Gear trains are used in many machinery for variable speed ratios. Typical shapes of gear trains are tivo categories : simple gear trains and planetary gear trains. This paper presents the kinematic ctraracteristics for planetary gear trains. The characteristics are the constraints of geometric relationships, number of gears, speed of each gear. and speed ratio of the train. The objective goal of this paper provides the CAI) software, which is the academic tool for understanding the kinematics of the planetary gear trains.

  • PDF

A Study on A Mechanism Type Design of General Planetary Gear Reducers (유성기어 감속기의 기구형태 설계에 관한 연구)

  • Shin J.H.;Kwon S.M.;Hwang J.G.;Kwak H.S.;Ko W.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1728-1732
    • /
    • 2005
  • Gear trains are used in many machinery for variable speed ratios. Typical shapes of gear trains are two categories: simple gear trains and planetary gear trains. Generally the methods of the design typical shapes are two way. One of the methods is trailblazing design and the other is selective design in available types. This paper presents the mechanism types when input rotating velocity and output rotating velocity are maintained for useful planetary gear reducers of twelve types. Also, this paper gives the applicable example about rotating velocity of the gear axis, carrier velocity and the organized gear specifications

  • PDF

The speed reducer of torque meter type with damping (Damping을 갖는 토크미터형 감속기)

  • Song, Chang-Hun;Lee, Woo-Min;Oh, Se-Hoon;Lee, Chong-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.471-475
    • /
    • 2001
  • Planetary Speed Reducer consists of a sun gear, a planetary gear and a ring gear and if one element is fixed at this Speed Reducer, another elements operate to become a drive-axis and a subordination-axis respectively. Planetary Speed Reducer is frequently used for gear Speed Reducer because it has the advantage of having the high efficiency and getting the high Speed Reducer ratio in small space. However, it is difficult to know the current transmitted torque immediately during the use of Speed Reducer and so complicated equipment is installed in addition to protect the overload of system. The object of this paper is to design the Speed Reducer of torque- meter type that can know the torque transmitted using the power transmission feature of a simple Planetary Speed Reducer fixed at ring gear.

  • PDF

Development of a Design and Analysis Program for Automatic Transmission Applications to Consider the Planetary Gear Noise and Its Adaptation (자동변속기 유성기어 소음을 고려한 시스템 분석용 프로그램 개발 및 적용에 관한 연구)

  • Lee, Hyun Ku;Lee, Sang Hwa;Kim, Moo Suk;Hong, Sa Man;Kim, Si Woong;Yoo, Dong Kyu;Kwon, Hyun Sik;Kahraman, Ahmet
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.7
    • /
    • pp.487-495
    • /
    • 2015
  • A generalized special program called planetary transmission analysis(here in after PTA) is developed to improve planetary gear noise in automatic transmission. PTA is capable of analyzing any typical one-degree-of-freedom automatic transmission gear train containing any number of simple, compound or complex-compound planetary gear sets. The kinematics module in PTA can compute the rotational speeds of gears and carriers and calculate the order frequencies to predict the planetary noise components. The power flow analysis module performs a complete static force analysis providing forces, moments, or torques of gears, bearings, clutches and connections. Based on the given type and number of planetary gear sets, the search algorithm determines all possible kinematic configurations and gear tooth combinations in a required set of gear ratios, while eliminating whole kinematic redundancies and unfavorable clutching sequences. By using PTA program, planetary internal speeds of new developed automatic transmission are early obtained; therefore, possibility of the noise problem could be predicted in early design stage. As implementing PTA in planetary gear NVH development procedure, planetary gear noise was successfully reduced by 10 dBA.

Steady State Performance Analysis of the Multi-mode Power Transmission Systems Equipped on Passenger Car (승용차용 다중모드 동력 전달 시스템의 정상상태 성능분석)

  • Lim, Won-Sik;Park, Yun-Kyoung;Park, Sung-Cheon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.364-371
    • /
    • 2013
  • Because of the increases in international oil prices and the level of global warming, the automotive industry has much interest in developing green cars with high fuel efficiencies. In addition, researchers in Korea are actively responding to high oil prices and $CO_2$ emission regulations in many ways. One example is, the multi-mode hybrid system, which is being studied to improve its performance. Because a multi-mode hybrid system is able to overcome the weaknesses of a system that uses simple planetary gears, excellent fuel efficiency and driving performances are the key features of the system. This paper analyzes the driving performance of the power-train system of GM-2MT70, which consists of one engine, two electric motors, one simple planetary gear, one double planetary gear, two clutches, and two brakes. The driving performance of the system's steady state is analyzed using performance modeling. The dynamic performance is analyzed using Matlab Simulink.

Development of Electric Motion Wheel Chair Driving System using Planetary Gear Device

  • Ham, Seong-Hun;Youm, Kwang-Wook
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.199-206
    • /
    • 2020
  • A wheelchair is an essential rehabilitation assistant device for the movement of paraplegia patients and generally paralyzed patients who cannot walk normally. In particular, the applicability of the manual/motorized wheelchair is gradually increasing. Until now, decelerators using belt, chain and worm gears, etc have been widely used. However, a decelerator takes a large space although it is a simple device and thus is not ideal for the driving part of manual/motorized wheelchair. For these reasons, in this study we developed a driving part producing a large driving force through a decelerator using planetary gears rather than conventional worm gear-based decelerator. We designed the tooth profile of the planetary gears for decelerator using Kisssoft program, In addition, we designed the driving part so as to apply it to the wheels of conventional wheelchairs, and then optimized the mechanism for the principles of manual/motorized transposition of the driving part and the operational principles. Based on the results of this study, we finally designed and manufactured a driving part for wheelchair decelerator in the form of planetary gears with 1 sun gear, 2 planetary gears and 1 ring gear.

Design of Planetary Gear Reducer Driving part to Possible Disadhesion from Electric Wheelchair (전동 휠체어에 탈·부착이 가능한 유성기어 감속기 구동부 설계)

  • Youm, Kwang-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.2
    • /
    • pp.9-13
    • /
    • 2022
  • Electric wheelchairs, the output from the motor is mainly applied to a speed reducer using a power transmission device such as a belt or a chain. However, although a speed reducer using a belt or chain is a simple device, it occupies a lot of space and has a space limitation, so it is not suitable for an electric wheelchair driving part. However, since the speed reducer of the planetary gear type is decelerated on the same axis, the volume can be reduced, so the space constraint is less than that of the belt or chain type reducer. Therefore, in this study, a driving part that can obtain great propulsion with a speed reducer using a planetary gear type was developed through a study on the driving part of a wheelchair that can be switched between manual and electric. Accordingly, the tooth shape of the planetary gear applied to the reducer was designed using the Kisssoft program. In addition, the drive part was designed to be applicable to the existing wheelchair wheels, and the mechanism was optimized for the manual/electric switching principle and operation principle of the drive part. Based on the research contents, the final design and manufacture of the wheelchair reducer drive unit in the form of a planetary gear having one sun gear, two planetary gears and one ring gear was carried out.

A Design Method of Gear Trains Using a Genetic Algorithm

  • Chong, Tae-Hyong;Lee, Joung sang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.62-70
    • /
    • 2000
  • The design of gear train is a kind of mixed problems which have to determine various types of design variables; i,e., continuous, discrete, and integer variables. Therefore, the most common practice of optimum design using the derivative of objective function has difficulty in solving those kinds of problems and the optimum solution also depends on initial guess because there are many sophisticated constrains. In this study, the Genetic Algorithm is introduced for the optimum design of gear trains to solve such problems and we propose a genetic algorithm based gear design system. This system is applied for the geometrical volume(size) minimization problem of the two-stage gear train and the simple planetary gear train to show that genetic algorithm is better than the conventional algorithm solving the problems that have continuous, discrete, and integer variables. In this system, each design factor such as strength, durability, interference, contact ratio, etc. is considered on the basis of AGMA standards to satisfy the required design specification and the performance with minimizing the geometrical volume(size) of gear trains

  • PDF

Effect Analysis of Carrier Pinhole Position Error on the Load Sharing and Load Distribution of a Planet Gear (캐리어의 핀홀 위치 오차에 따른 유성기어의 하중 분할 및 하중 분포 영향 분석)

  • Kim, Jeong-Gil;Park, Young-Jun;Lee, Geun-Ho;Kim, Young-Joo;Oh, Joo-Young;Kim, Jae-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.66-72
    • /
    • 2016
  • Gearboxes are mechanical components that transmit power by adjusting input and output speed and torque. Their design requirements include small size, light weight, and long lifespan. We have investigated the effects of carrier pinhole position error on the load sharing and load distribution characteristics of a planetary gear set with four planet gears. The simulation model for a simple planetary gear set was developed and verified by comparing analytical results with a putative model. Then, we derived the load sharing and load distribution characteristics under various pinhole position error conditions using the prototypical simulation model. The results showed that the mesh load factor and face load factor increased with the pinhole position error, which then influenced the safety factor for tooth bending strength and surface durability.

Development of Torque Sensor Using the Structural Characteristic of Planetary Gear and Hall Effect Sensor

  • Jang, In-Hun;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2058-2062
    • /
    • 2005
  • This article describes the useful way to measure the torque and RPM of the geared motor. For this, we have made the planetary geared reduction motor including the torque sensor unit which consists of hall effects sensor and permanent magnet. Our monitoring system displays the sensing values (torque, rpm) and the calculated value (power) and it also has the network capability using the Bluetooth protocol. We will show that our solution is much more inexpensive and simple method to measure torque and rpm than before.

  • PDF