• Title/Summary/Keyword: Simple path

검색결과 659건 처리시간 0.032초

참조 경로 비교법을 이용한 유성 버스트 무선로의 특성 추정 (Estimation of Characteristics of Meteor Burst Radio Path Using Reference Path Comparison Method)

  • 김병철;김기채;이무영
    • 한국전자파학회논문지
    • /
    • 제9권1호
    • /
    • pp.72-86
    • /
    • 1998
  • 본 논문은 불특정의 유성 버스트 통신 경로의 버스트 신호 발생빈도와 그 평균 지속 시간을 예측하는데 있어서 기존의 경로를 참조 경로로 하여 각 정수를 서로 비교 계산하므로서 간편, 정확하게 산출할 수 있음을 소개하는 것이다. 이 논문에서는 유성 경로의 발생빈도와 지속시간을 그 경로의 거리, 주파수, 안테나 이득, 송신 출력 그리고 수신기의 문턱치를 기존 경로와 비교 계산하여 산출할 수 있음을 해석적으로 증명하고 이것을 확인하기 위하여 한국 경산으로부터 일본 hamamatu 및 Hatinohe간의 750 km와 1,200 km의 두가지 경로에 관하여 각각 실험을 실시한 결과를 보고하고 있다. 그 결과 실험으로 얻어진 버스트 발생 빈도와 평균지속 시간은 해석 결과와 잘 일치하고 있음을 확인하였다.

  • PDF

GPS 기반 모바일 맞춤형 놀이공원 경로추천시스템의 설계 및 구현 (A Customized Mobile Tour Guide System for Amusement Park based on GPS)

  • 유석종
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권8호
    • /
    • pp.99-105
    • /
    • 2010
  • 놀이공원은 많은 사용자들이 복잡하게 배치되어 있는 놀이시설을 이용하기 때문에 시행착오를 줄이면서 효과적인 경로 탐색이 필요한 장소이다. 또한 놀이기구 이용시에는 최단경로뿐만 아니라 시설물 별 이용자 대기시간을 최소화하는 경로 탐색이 요구된다. 본 연구에서는 놀이공원에서 GPS와 무선인터넷을 통하여 놀이시설간의 이동거리와 대기시간에 기반한 효과적인 경로탐색 시스템을 설계 및 구현하였다. 본 시스템은 구성원 특성을 고려하는 맞춤형 이동경로탐색을 위한 인터페이스를 제공하고, 무선인터넷으로 데이터베이스 연동을 통해 대기시간 정보를 참조 할 수 있으며, 사용자의 GPS 위치정보를 고려하여 경로추천이 가능하다.

Limit-cycle 항법과 모서리 검출을 기반으로 하는 UGV를 위한 계획 경로 알고리즘 (Path Planning Algorithm for UGVs Based on the Edge Detecting and Limit-cycle Navigation Method)

  • 임윤원;정진수;안진웅;김동한
    • 제어로봇시스템학회논문지
    • /
    • 제17권5호
    • /
    • pp.471-478
    • /
    • 2011
  • This UGV (Unmanned Ground Vehicle) is not only widely used in various practical applications but is also currently being researched in many disciplines. In particular, obstacle avoidance is considered one of the most important technologies in the navigation of an unmanned vehicle. In this paper, we introduce a simple algorithm for path planning in order to reach a destination while avoiding a polygonal-shaped static obstacle. To effectively avoid such an obstacle, a path planned near the obstacle is much shorter than a path planned far from the obstacle, on the condition that both paths guarantee that the robot will not collide with the obstacle. So, to generate a path near the obstacle, we have developed an algorithm that combines an edge detection method and a limit-cycle navigation method. The edge detection method, based on Hough Transform and IR sensors, finds an obstacle's edge, and the limit-cycle navigation method generates a path that is smooth enough to reach a detected obstacle's edge. And we proposed novel algorithm to solve local minima using the virtual wall in the local vision. Finally, we verify performances of the proposed algorithm through simulations and experiments.

드론 안전비행맵 구축 및 비행경로 탐색 알고리즘 연구 (A Study on the Construction of a Drone Safety Flight Map and The Flight Path Search Algorithm)

  • 홍기호;원진희;박상현
    • 한국멀티미디어학회논문지
    • /
    • 제24권11호
    • /
    • pp.1538-1551
    • /
    • 2021
  • The current drone flight plan creation creates a flight path point of two-dimensional coordinates on the map and sets an arbitrary altitude value considering the altitude of the terrain and the possible flight altitude. If the created flight path is a simple terrain such as a mountain or field, or if the user is familiar with the terrain, setting the flight altitude will not be difficult. However, for drone flight in a city where buildings are dense, a safer and more precise flight path generation method is needed. In this study, using high-precision spatial information, we construct a drone safety flight map with a 3D grid map structure and propose a flight path search algorithm based on it. The safety of the flight path is checked through the virtual drone flight simulation extracted by searching for the flight path based on the 3D grid map created by setting weights on the properties of obstacles and terrain such as buildings.

Estimation of Allowable Path-deviation Time in Free-space Optical Communication Links Using Various Aircraft Trajectories

  • Kim, Chul Han
    • Current Optics and Photonics
    • /
    • 제3권3호
    • /
    • pp.210-214
    • /
    • 2019
  • The allowable path-deviation time of aircraft in a free-space optical communication system has been estimated from various trajectories, using different values of aircraft speeds and turn rates. We assumed the existence of a link between the aircraft and a ground base station. First, the transmitter beam's divergence angle was calculated through two different approaches, one based on a simple optical-link equation, and the other based on an attenuation coefficient. From the calculations, the discrepancy between the two approaches was negligible when the link distance was approximately 110 km, and was under 5% when the link distance ranged from 80 to 140 km. Subsequently, the allowable path-deviation time of the aircraft within the tracking-error tolerance of the system was estimated, using different aircraft speeds, turn rates, and link distances. The results indicated that the allowable path-deviation time was primarily determined by the aircraft's speed and turn rate. For example, the allowable path-deviation time was estimated to be ~3.5 s for an aircraft speed of 166.68 km/h, a turn rate of $90^{\circ}/min$, and a link distance of 100 km. Furthermore, for a constant aircraft speed and turn rate, the path-deviation time was observed to be almost unchanged when the link distance ranged from 80 to 140 km.

진동 유동해석기법을 이용한 자동차 실내소음 저감 및 음질 개선 (A Study on Improvement of Sound Quality of Vehicle Using the Vibrational Power Flow)

  • 이상권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.208-214
    • /
    • 2000
  • Reduction of structure-borne noise of the compartment in a car is an important task in automotive engineering. Transfer path analysis using vibroacoustic reciprocity technique or multiple path decomposition method has generally been used for structure-borne noise path analysis. These methods are useful in solving particular problem but do not quantify the effectiveness of vibration isolation of each isolator of a vehicle. To quantify the effectiveness of vibration isolation, the vibrational power flow has been used for a simple isolation system or a laboratory based isolation system. It is often difficult to apply the vibrational power flow technique to the complex isolation system like a car. In this paper, a simple equation is derived for calculation of the vibrational power flow of an isolation system with multiple isolators such as a car. It is successfully applied to not only quantifying the relative contributions of eighteen isolators but also reducing structure-borne noise of a passenger car. According to the results, the main contributor of eighteen isolators is the rear roll mount of an engine. The reduced structure-borne noise level is about 5dBA.

  • PDF

Fisher's Angle에 관한 연구 (A STUDY OF FISHER'S ANGLE)

  • 김영수
    • 대한치과보철학회지
    • /
    • 제17권1호
    • /
    • pp.7-21
    • /
    • 1979
  • This investigation was to analyse normal protrusive and lateral condylar pantographic records written on the sagittal plane and to study components of Fisher's angle and their interrelations. The purpose of this study was limited to (1) discussing the significance of sagittal pantographic record in diagnosis of occlusal disease and(2) basing for reasoning validity of measuring Fisher's angle which has been reported so far. As a result followings were concluded. 1. In each protrusive and lateral condylar movement path, five complicate factors such as initial straightness, distributed simple sigmoid type, simple curvature, initial tiny protruding convexity and tiny repeated sigmoid patterns were noted. Generally each condylar movement path was composed of two to three of these factors. 2. The distribution of positional interrelations of protrusive and lateral condylar paths could be divided into five categories; (a) protrusive-upper, (b) completely coinciding, (c) partially initial coinciding, (d) partially inverted crossing, and (e) completely inverting. Among these, protrusive path-upper positioned condyles were prevailed (79.2%). 3. The distribution of interrelations of protrusive and lateral condylar paths could be devided into five categories according to their distances in the course of movement. Among these, opening (95.8%) and paralleling (66.7%) were prevailing. 4. The involved number of characteristic heterogenous patterns of five categories in protrusive and lateral condylar movement recording relations at one simultaneous recordings was limited to three. However, in case of homogeneous patterns were repeated, usually three to four were included. 5. The maximum distance between protrusive and lateral condylar paths was 1.45mm at the location of 4mm advanced position from centric relation point and 3.90mm at the location of protrusive movement terminal. 6. It seemed to be that ,pantographic records should be consulted other clinical symptoms in order to make certain occlusion diagnosis. 7. At the present moment of investigation, expressing Fisher's angle as a degree revealed a lack due to inherent complexity of protrusive and lateral condylar movement paths. 8. The typical pattern of protrusive and lateral condylar paths written on a pantographic sagittal plate might be described as follows; (a) protrusive condylar path should be positioned upwardly, (b) both mainly be simple curvature, (c) interrelations mainly be opening or paralleling. 9. The mean amounts of separation between protrusive and lateral condylar movement path were $0.75{\pm}0.46$ at 4mm advanced location from centric relation and $1.74{\pm}0.64mm$ at the location of protrusive path terminal.

  • PDF

경로통행시간 분포비율 추정 알고리즘 개발 (Development of Path Travel Time Distribution Estimation Algorism)

  • 이영우
    • 대한교통학회지
    • /
    • 제23권6호
    • /
    • pp.19-30
    • /
    • 2005
  • 본 논문에서는 수집된 데이터를 이용한 경로통행시간 추정에 관한 연구를 수행하였다. 교통정보 이용자들은 출발지에서 목적지까지 통행하는데 소요되는 경로통행시간에 대해 다양한 정보를 요구하고 있다. 그러나 지금까지 경로통행시간 정보는 평균링크통행시간의 단순한 조합에 의한 평균경로통행시간의 단조로운 형태로 제공되고 있어 정보이용자들의 다양한 경로통행시간 정보에 대한 요구를 충족시키지 못하고 있는 실정이다. 이러한 획일적인 경로통행시간 정보제공의 문제점을 개선하기 위해 본 연구에서는 동일구간, 동일조건에서 여러 대표값으로 분포하는 경로통행시간에 대한 연구를 통하여 다양한 경로통행시간에 대한 정보를 제공함으로써 정보 이용자의 요구에 부응하기 위한 경로통행시간 추정에 관한 연구를 실시하였다. 본 연구에서는 링크통행시간의 조합을 통해 경로통행시간의 분포를 추정하기 위해 링크통행시간과 경로통행시간과의 관계를 분석하였다. 이러한 결과를 바탕으로 링크통행시간 분포비율을 조합하여 경로통행시간 분포비율을 추정하는 알고리즘을 구축하였으며, 알고리즘 적용결과 우수한 추정력을 가지는 것으로 분석되었다.

A Study on Tool Path Error Control for Disk Cams in a Five-Axis CNC Machining Center

  • Kwon, Soon-Man;Shin, Joong-Ho;Yoo, Geun-Jong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1012-1016
    • /
    • 2004
  • In this paper, we propose a simple but optimized NC code generating technique for disk cams by means of tool path error control in a five-axis CNC machining center. Using the geometric theorem of the triangle made between manufacturing points and error checkpoint, the tool path error has been studied for disk cams profile generation and an improvement in the profile has been obtained. Then, based on the present manufacturing approach a computer program is developed on $C^{++}$ language to perform and to verify the shape design, the manufacturing simulation, and the optimized generation of the NC code.

  • PDF

Path Following Control of Mobile Robot Using Lyapunov Techniques and PID Cntroller

  • Jin, Tae-Seok;Tack, Han-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권1호
    • /
    • pp.49-53
    • /
    • 2011
  • Path following of the mobile robot is one research hot for the mobile robot navigation. For the control system of the wheeled mobile robot(WMR) being in nonhonolomic system and the complex relations among the control parameters, it is difficult to solve the problem based on traditional mathematics model. In this paper, we presents a simple and effective way of implementing an adaptive following controller based on the PID for mobile robot path following. The method uses a non-linear model of mobile robot kinematics and thus allows an accurate prediction of the future trajectories. The proposed controller has a parallel structure that consists of PID controller with a fixed gain. The control law is constructed on the basis of Lyapunov stability theory. Computer simulation for a differentially driven nonholonomic mobile robot is carried out in the velocity and orientation tracking control of the nonholonomic WMR. The simulation results of wheel type mobile robot platform are given to show the effectiveness of the proposed algorithm.