• Title/Summary/Keyword: Similarity of Velocity

Search Result 193, Processing Time 0.023 seconds

Numerical Analysis on Passenger Flow for the Model of Railway Station (철도 역사 모델에 대한 여객 유동 해석)

  • Kwon, Hyeok-Bin;Cha, Chang-Hwan;Nam, Seong-Won
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.387-391
    • /
    • 2006
  • Insight into behaviour of pedestrians as well as tools to assess passenger flow conditions are important in for instance planning and geometric design of railway station under regular and safety-critical circumstances. Algorithm for passenger flow analysis based on DEM(Discrete Element Method) is newly developed. There are lots of similarity between particle-laden two phase flow and passenger flow. The velocity component of 1st phase corresponds to the unit vector of calculation cell, each particle to passenger, volume fraction to population density and the particle velocity to the walking velocity, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger. To verify the effectiveness of new algorithm, passenger flow analysis for the basic models of railway station is conducted.

  • PDF

An Experimental Study on the Flow Characteristics of a Swirl-Jet Diffuser (공장환기용 선회 제트 디퓨저의 유동 특성에 관한 실험 연구)

  • Lee, C.S.;Jurng, J.;Jeong, S.Y.;Hong, K.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.103-109
    • /
    • 1994
  • An experimental study is performed on the flow characteristics of a swirl-jet diffuser for factory ventilation. Swirl number ranges from 0(nonswirl jet) to 0.6 when the angle of swirl vane is 60 degree. As swirl becomes strong, the maximum velocity in the plane perpendicular to jet axis decreases fast and the uniformity of velocity becomes good, particularly in the ventilated area. The similarity in velocity profiles has been found for axial velocity from even when swirl number equals 0.6. The flow characteristics of the swirl-jet which has the swirl number of 0.6 is thought to be the best among these three swirl numbers for factory ventilation. However, the pressure drop in the diffuser increases as the swirl becomes strong. This should be considered in the design of the total ventilation system including a duct system.

  • PDF

The effect of gas density on the drop trajectory and drop size distribution in high speed gas stream (고속기류에 분사된 액적궤적 및 입경분포에 미치는 주위 기체밀도의 영향)

  • Lee, C.H.
    • Journal of ILASS-Korea
    • /
    • v.5 no.3
    • /
    • pp.37-44
    • /
    • 2000
  • High velocity, gas-assisted liquid drop trajectories were investigated under well-controlled experimental conditions at elevated gas densities and room temperature. A monodisperse stream of drops which are generated by a vibrating-orifice drop generator were injected into a transverse high velocity gas stream. The gas density and air jet velocity were adjusted independently to keep the Weber numbers constant. The Weber numbers studied were 72, 148, 270, 532. The range of experimental conditions included studied the three drop breakup regimes previously referred as bag, stretching/thinning and catastrophic breakup regimes. High-magnification photography and conventional spray field photographs were taken to study the microscopic breakup mechanisms and the drop trajectories in high velocity gas flow fields, respectively. The parent drop trajectories were affected by the gas density and the gas jet velocities and do not show similarity with respect to the either Weber or the Reynolds number, as expected.

  • PDF

Comparison of Correlation Coefficients and Intraclass Correlation Coefficients Between Two-way FSI Flow Velocity of Simulated Abdominal Aorta and Human 4D Flow MRI Flow Velocity (시뮬레이션 복부 대동맥의 양방향 FSI 유속과 인체 4D flow MRI 유속의 상관계수, 급내상관계수 비교)

  • Ahn, Hae Nam;Kim, Jung Hun;Park, Ji eun;Choi, Hyeun Woo;Lee, Jong Min
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.143-149
    • /
    • 2021
  • In order to predict and prevent the disease of the abdominal aorta, which is the largest artery in the human body and the most common aneurysm, the normal arterial blood flow operation should be considered. To this end, we are trying to solve problems that may arise in the future by executing FSI based on the data obtained from 4D flow MRI. However, to match the similarity between the 4D flow MRI flow and the FSI flow, correlation was used in previous papers, but the correlation did not show the degree of agreement. Therefore, in this paper, we analyzed the correlation between the 4D flow MRI flow velocity of the human abdominal aorta and the two-way FSI flow velocity in which the three physical properties used for the aortic FSI were added to the CT abdominal aorta 3D model and the interclass correlation coefficient. As a result, the physical property M2 showed the highest similarity in correlation and intraclass correlation coefficient, and this property is intended to be helpful in the future study of the abdominal aortic two-way FSI flow rate.

How to quantify the similarity of 2D distributions: Comparison of spatial distribution of Dark Matter and Intracluster light

  • Yoo, Jaewon;Ko, Jongwan;Sabiu, Cristiano G.;Chun, Kyungwon;Shin, Jihye;Hwang, Ho Seong;Smith, Rory;Kim, Hyowon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.67.4-68
    • /
    • 2021
  • In studying the dynamical evolution of galaxy clusters, one intriguing approach is to compare the spatial distributions of various components, such as the dark matter, the member galaxies, the gas, and the intracluster light (ICL; the diffuse light from stars, which are not bound any individual cluster galaxy). If we find a visible component whose spatial distribution coincides with the dark matter distribution, then we could draw a dark matter map without requiring laborious weak lensing analysis. Furthermore, if the component traces the dark matter distribution better for more relaxed galaxy cluster, we could use the similarity as a dynamical stage estimator of the galaxy cluster. We present a novel new methodology to quantify the similarity of two or more 2-dimensional spatial distributions. We apply the method to a sample of galaxy clusters at different dynamical stages simulated within N-cluster Run, which is an N-body simulation using the galaxy replacement technique. Among the various components (stellar particles, galaxies, ICL), the velocity defined ICL+ brightest cluster galaxy (BCG) component traces the dark matter best. Between the sample galaxy clusters, the relaxed clusters show stronger similarity of the spatial distribution between the dark matter and ICL+BCG than the dynamically young clusters.

  • PDF

A similarity solution for undrained expansion of a cylindrical cavity in K0-consolidated anisotropic soils

  • Wang, You;Lin, Lin;Li, Jingpei
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.303-315
    • /
    • 2021
  • A rigorous and generic similarity solution is developed for assessment of the undrained expansion responses of a cylindrical cavity expansion in K0-consolidated anisotropic soils. A K0-consolidated anisotropic modified Cam-clay (K0-AMCC) model that can represent the initial stress anisotropy and the effects of stress-induced anisotropy is used to model the soil behaviors during cavity expansion. All the seven basic unknowns, the three stress components, the pore water pressure, the particle velocity, the specific volume and the hardening parameter, are reduced to the functions of a dimensionless radial coordinate and are taken as coupled variables to formulate the problem. The governing equations are formulated by making use of the equilibrium equation, the constitutive equation, the consistency condition, the continuity condition and the undrained condition, which are then solved as an initial value problem. The proposed rigorous similarity solution is compared with some well-documented rigorous solutions to validate the solution and to highlight the special expansion responses in anisotropic soils. The results reveal that the present solution can yield more predictions for cavity expansion problems in soils with initial anisotropic stresses.

A Construction of Aerodynamic Force Measurement System for Wind Tunnel Test of Yacht Sail and Aerodynamic Forces Measurement of Model Sail (요트세일의 풍동시험을 위한 공력 계측시스템 구축과 모형세일의 공력 계측)

  • Kim, Choul-Hee;Choi, Jung-Kyu;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.445-450
    • /
    • 2011
  • In order to estimate a yacht sail performance, measuring system of aerodynamic forces acting on the yacht sail is constructed and experiments of flexible model sail are carried out at the medium-size subsonic wind tunnel of Chungnam National University. Experimental results for a flexible sail are compared with experimental and numerical results of fixed shape sail. In case of a fixed shape sail, lift and drag coefficients are rarely changed at all velocity conditions. However, those of the flexible sail are decreased as the incoming velocity is increased. These are understandably resulted from shape variations due to the flexible material. Therefore aero-elastic similarity should be more carefully considered in the model test rather than other similarities.

Flow Characteristics of Axi-symmetric Swirl Jet in the Initial Regions (축대칭 회전분사류의 초기 유동특성)

  • Han, Yong-Un;An, Yeong-Hui;Kim, Dong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.531-538
    • /
    • 2002
  • Flow characteristics of a round jet with swirl number of 0.17 have been investigated using a hot -wire anemometry in the initial region within 10D(exit diameter). Swirl effects were observed by comparing centerline flow characteristics, similarities and turbulent budgets of a swirl jet and a free jet, respectively. To obtain similarity of the radial profiles mean velocity and higher moments were measured at the vertical pl anes, located at 2.5, 5.0, 7.5D, 10D, respectively. The centerline velocity characteristics were also measured. It is turned out that similarities of mean and Reynolds stress are established. The jet boundary has wider width than that of a free jet and the shear stress also becomes stronger. In addition the centerline decay becomes faster than that of the free jet, indicating that the swirl induces more entrainment in the initial region of the swirl Jet by transferring the axial mean kinetic energy into the swirl energy and, therefore, has wider boundary, compared with that of free jet.

Behaviors of Anisotropic Fluids in the Vicinity of a Wedge

  • Kim, Youn-J.
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.690-698
    • /
    • 2000
  • The laminar boundary layer flow and heat transfer of anisotropic fluids in the vicinity of a wedge have been examined with constant surface temperature. The similarity variables found by Falkner and Skan are employed to reduce the stream wise-dependence in the coupled nonlinear boundary layer equations. The numerical solutions are presented using the fourth-order Runge - Kutta method and the distribution of velocity, micro-rotation, shear and couple stresses and temperature across the boundary layer are plotted. These results are also compared with the corresponding flow problems for Newtonian fluid over wedges. It is found that for a constant wedge angle, the skin friction coefficient is lower for micropolar fluid, as compared to Newtonian fluid. For the case of the constant material parameter K, however, the magnitude of velocity for anisotropic fluid is greater than that of Newtonian fluid. The numerical results also show that for a constant wedge angle with a given Prandtl number, Pr = I, the effect of increasing values of K results in increasing thermal boundary layer thickness for anisotropic fluid, as compared with Newtonian fluid. For the case of the constant material parameter K, however, the heat transfer rate for anisotropic fluid is lower than that of Newtonian fluid.

  • PDF

An Experimental Study of Mutual Relation between Wake and Boundary Layer of a Flat Plate; Mean Velocity Field (평판 경계층과 후류와의 상호관계에 관한 연구; 평균속도장)

  • Kim, Dong-Ha;Chang, Jo-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.1-11
    • /
    • 2004
  • An experimental study was carried out to investigate the influence of flow conditions of a boundary layer on the near-wake of a flat plate. Various attaching positions of tripping wires were selected to change flow conditions on a boundary layer. Laminar, transitional, and turbulent boundary layer conditions at 0.98C from the leading edge are imposed to investigate the evolution of symmetric and asymmetric wake. An x-type hot-wire probe(55P61) is employed to measure at 8 stations of the near-wake region. Measured mean velocity distributions are presented in terms of similarity parameter. It is found that the symmetric wake collapses well to the universal profile in the central part of the wake. However, the universal profile is not suitable in describing an asymmetric wake.