• Title/Summary/Keyword: Similar Sub-Trajectory Retrieval

Search Result 4, Processing Time 0.017 seconds

Similar Sub-Trajectory Retrieval based on k-warping Algorithm for Moving Objects in Video Databases (비디오 데이타베이스에서 이동 객체를 위한 k-워핑 알고리즘 기반 유사 부분궤적 검색)

  • 심춘보;장재우
    • Journal of KIISE:Databases
    • /
    • v.30 no.1
    • /
    • pp.14-26
    • /
    • 2003
  • Moving objects' trajectories play an important role in indexing video data on their content and semantics for content-based video retrieval. In this paper, we propose new similar sub-trajectory retrieval schemes based on k-warping algorithm for efficient retrieval on moving objects' trajectories in video data. The proposed schemes are fixed-replication similar sub-trajectory retrieval(FRSR) and variable-replication similar sub-trajectory retrieval(VRSR). The former can replicate motions with a fixed number for all motions being composed of the trajectory. The latter can replicate motions with a variable number. Our schemes support multiple properties including direction, distance, and time interval as well as a single property of direction, which is mainly used for modeling moving objects' trajectories. Finally, we show from our experiment that our schemes outperform Li's scheme(no-warping) and Shan's scheme(infinite-warping) in terns of precision and recall measures.

Signature-based Indexing Scheme for Similar Sub-Trajectory Retrieval of Moving Objects (이동 객체의 유사 부분궤적 검색을 위한 시그니쳐-기반 색인 기법)

  • Shim, Choon-Bo;Chang, Jae-Woo
    • The KIPS Transactions:PartD
    • /
    • v.11D no.2
    • /
    • pp.247-258
    • /
    • 2004
  • Recently, there have been researches on storage and retrieval technique of moving objects, which are highly concerned by user in database application area such as video databases, spatio-temporal databases, and mobile databases. In this paper, we propose a new signature-based indexing scheme which supports similar sub-trajectory retrieval at well as good retrieval performance on moving objects trajectories. Our signature-based indexing scheme is classified into concatenated signature-based indexing scheme for similar sub-trajectory retrieval, entitled CISR scheme and superimposed signature-based indexing scheme for similar sub-trajectory retrieval, entitled SISR scheme according to generation method of trajectory signature based on trajectory data of moving object. Our indexing scheme can improve retrieval performance by reducing a large number of disk access on data file because it first scans all signatures and does filtering before accessing the data file. In addition, we can encourage retrieval efficiency by appling k-warping algorithm to measure the similarity between query trajectory and data trajectory. Final]y, we evaluate the performance on sequential scan method(SeqScan), CISR scheme, and SISR scheme in terms of data insertion time, retrieval time, and storage overhead. We show from our experimental results that both CISR scheme and SISR scheme are better than sequential scan in terms of retrieval performance and SISR scheme is especially superior to the CISR scheme.

Similar sub-Trajectory Retrieval Technique based on Grid for Video Data (비디오 데이타를 위한 그리드 기반의 유사 부분 궤적 검색 기법)

  • Lee, Ki-Young;Lim, Myung-Jae;Kim, Kyu-Ho;Kim, Joung-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.183-189
    • /
    • 2009
  • Recently, PCS, PDA and mobile devices, such as the proliferation of spread, GPS (Global Positioning System) the use of, the rapid development of wireless network and a regular user even images, audio, video, multimedia data, such as increased use is for. In particular, video data among multimedia data, unlike the moving object, text or image data that contains information about the movements and changes in the space of time, depending on the kinds of changes that have sigongganjeok attributes. Spatial location of objects on the flow of time, changing according to the moving object (Moving Object) of the continuous movement trajectory of the meeting is called, from the user from the database that contains a given query trajectory and data trajectory similar to the finding of similar trajectory Search (Similar Sub-trajectory Retrieval) is called. To search for the trajectory, and these variations, and given the similar trajectory of the user query (Tolerance) in the search for a similar trajectory to approximate data matching (Approximate Matching) should be available. In addition, a large multimedia data from the database that you only want to be able to find a faster time-effective ways to search different from the existing research is required. To this end, in this paper effectively divided into a grid to search for the trajectory to the trajectory of moving objects, similar to the effective support of the search trajectory offers a new grid-based search techniques.

  • PDF

ECoMOT : An Efficient Content-based Multimedia Information Retrieval System Using Moving Objects' Trajectories in Video Data (ECoMOT : 비디오 데이터내의 이동체의 제적을 이용한 효율적인 내용 기반 멀티미디어 정보검색 시스템)

  • Shim Choon-Bo;Chang Jae-Woo;Shin Yong-Won;Park Byung-Rae
    • The KIPS Transactions:PartB
    • /
    • v.12B no.1 s.97
    • /
    • pp.47-56
    • /
    • 2005
  • A moving object has a various features that its spatial location, shape, and size are changed as time goes. In addition, the moving object has both temporal feature and spatial feature. It is one of the highly interested feature information in video data. In this paper, we propose an efficient content-based multimedia information retrieval system, so tailed ECoMOT which enables user to retrieve video data by using a trajectory information of moving objects in video data. The ECoMOT includes several novel techniques to achieve content-based retrieval using moving objects' trajectories : (1) Muitiple trajectory modeling technique to model the multiple trajectories composed of several moving objects; (2) Multiple similar trajectory retrieval technique to retrieve more similar trajectories by measuring similarity between a given two trajectories composed of several moving objects; (3) Superimposed signature-based trajectory indexing technique to effectively search corresponding trajectories from a large trajectory databases; (4) convenient trajectory extraction, query generation, and retrieval interface based on graphic user interface