• Title/Summary/Keyword: SimPowerSystems

Search Result 273, Processing Time 0.042 seconds

Domestic Efforts for SFCL Application and Hybrid SFCL (국내 초전도 한류기 요구와 하이브리드 초전도 한류기)

  • Hyun, O.B.;Kim, H.R.;Yim, Y.S.;Sim, J.;Park, K.B.;Oh, I.S.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.60-67
    • /
    • 2008
  • We present domestic efforts for superconducting fault current limiter (SFCL) application in the Korea Electric Power Corporation (KEPCO) grid and pending points at issue. KEPCO's decision to upgrade the 154 kV/22.9 kV main transformer from 60 MVA to 100 MVA cast a problem of high fault current in the 22.9 kV distribution lines. The grid planners supported adopting an SFCL to control the fault current. This environment friendly to SFCL application must be highly dependent upon the successful development of SFCL having specifications that domestic utility required. The required conditions are (1) small size of not greater than twice of 22.9 kV gas insulated switch-gear (GIS), (2) sustainability of current limitation without the line breaking by circuit breakers (CB) for maximum 1.5 seconds. Also, optionally, recommended is (3) the reclosing capability. Conventional resistive SFCLs do not meet (1) $\sim$ (3) all together. A hybrid SFCL is an excellent solution to meet the conditions. The hybrid SFCL consists of HTS SFCL components for fault detection and line commutation, a fast switch (FS) to break the primary path, and a limiter. This characteristic structure not only enables excellent current limiting performances and the reclosing capability, but also allows drastic reduction of HTS volume and small size of the cryostat, resulting in economic feasibility and compactness of the equipment. External current limiter also enables long term limitation since it is far less sensitive to heat generation than HTS. Semi-active operation is another advantage of the hybrid structure. We will discuss more pending points at issues such as maintenance-free long term operation, small size to accommodate the in-house substation, passive and active control, back-up plans, diagnosis, and so on.

  • PDF

Development of High Intensity Progressive Wave Tube (고에너지 음향환경시험 튜브 개발)

  • K.Kim, Young-Key;Kim, Hong-Bae;Moon, Sang-Mu;Woo, Sung-Hyun;Im, Jong-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.962-965
    • /
    • 2005
  • A high intensity progressive wave tube is installed at Korea Aerospace Research Institute (KARI) for acoustic environmental tests. The test facility has 700 mm x 800 mm cross-sectional area, and provides acoustic environment of 165 dB over the frequency range of $25Hz{\sim}10,000Hz$. The facility consists of a 6 m long acoustic wave tube, acoustic power generation systems, gases nitrogen supply systems, and acoustic control systems. This paper describes how the basic parameters of the facility and power generation systems are controlled to meet the requirement of the test. The shape and length of the tube has been designed by using the size of test objects and the wave propagation characteristics of the tube. The capacity of acoustic power generation systems is determined by the energy conversion of acoustic wave and the efficiency of acoustic modulators. Moreover, the paper introduces test run results of the tube. Overall of 163dB has been generated by using the test facility.

  • PDF

Introduction of KEPCO's distribution class SFCL fabricated for verification test (실증시험용 배전급 초전도 한류기의 특성 평가 및 운전 시험)

  • Yim, Seong-Woo;Park, Chung-Ryul;Yu, Seung-Duck;Kim, Hye-Rim;Hyun, Ok-Bae;Park, Kwon-Bae;Sim, Jung-Wook;Lee, Kyoung-Ho;Oh, Ill-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.294_295
    • /
    • 2009
  • Superconducting fault current limiter (SFCL) is an power device of a novel concept. While SFCLs generate no ohmic loss during the operation carrying normal currents, they can limit fault currents very fast making large impedance by their quench characteristics. In 2006, KEPCO has developed a distribution class hybrid type SFCL by a collaborative research project with LS industrial systems. The SFCL has merits in practical and economical points of view. In the SFCL, the superconductor just plays a role of a fault detector and the current limiting is completed by the other current limiting element made of normal metals throu호 the line commutation. As a result, the required amounts of superconductors can be reduced considerably. Consequently, the hybrid SFCL can be fabricated with small size and cost, maintaining perfect current limiting performance. Currently, KEPCO is carrying out a research project at Gochang power test center for the purpose of the verification test of the 22.9 kV/ 630 A class SFCL for the practical application in real grid. Through the project, a long term operational test and fault current test will be done. In this paper, the back ground of development and installation of the SFCL will be explained and the operation plan of the SFCL for the verification test is also introduced.

  • PDF

Modeling of 18-Pulse STATCOM for Power System Applications

  • Singh, Bhim;Saha, R.
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.146-158
    • /
    • 2007
  • A multi-pulse GTO based voltage source converter (VSC) topology together with a fundamental frequency switching mode of gate control is a mature technology being widely used in static synchronous compensators (STATCOMs). The present practice in utility/industry is to employ a high number of pulses in the STATCOM, preferably a 48-pulse along with matching components of magnetics for dynamic reactive power compensation, voltage regulation, etc. in electrical networks. With an increase in the pulse order, need of power electronic devices and inter-facing magnetic apparatus increases multi-fold to achieve a desired operating performance. In this paper, a competitive topology with a fewer number of devices and reduced magnetics is evolved to develop an 18-pulse, 2-level $\pm$ 100MVAR STATCOM in which a GTO-VSC device is operated at fundamental frequency switching gate control. The inter-facing magnetics topology is conceptualized in two stages and with this harmonics distortion in the network is minimized to permissible IEEE-519 standard limits. This compensator is modeled, designed and simulated by a SimPowerSystems tool box in MATLAB platform and is tested for voltage regulation and power factor correction in power systems. The operating characteristics corresponding to steady state and dynamic operating conditions show an acceptable performance.

Study of Electromagnetic Wave Absorption Properties with Particle Size in Soft Magnetic Alloy Powder (연자성 합금 분말의 입자크기에 따른 전자파 흡수 특성 비교)

  • Hong, S.H.;Sohn, K.Y.;Park, W.W.;Nam, J.M.;Moon, B.G.;Song, Y.S.
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.261-264
    • /
    • 2007
  • The electromagnetic wave (EM) absorption properties of various particle size have been investigated in a sheet-type absorber using the $Fe_{73}Si_{16}B_{7}Nb_{3}Cu_{1}$ alloy powder. With decreasing the average particle size, the complex permeability (${\mu}_{r}$) and permittivity (${\varepsilon}_{r}$) increased and the matching frequency is shifted toward lower frequency. The fabricated EM wave absorbers showed permeability $2{\sim}6$, permittivity $17{\sim}23$ for a $-325{\sim}+400$ mesh sample, and the calculated power absorption was as high as 80% in the frequency range over 2 GHz.

Development of the Power Simulation Tool for Energy Balance Analysis of Nanosatellites

  • Kim, Eun-Jung;Sim, Eun-Sup;Kim, Hae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.225-235
    • /
    • 2017
  • The energy balance in a satellite needs to be designed properly for the satellite to safely operate and carry out successive missions on an orbit. In this study, an analysis program was developed using the MATLAB(R) graphic user interface (GUI) for nanosatellites. This program was used in a simulation to confirm the generated power, consumed power, and battery power in the satellites on the orbit, and its performance was verified with applying different satellite operational modes and units. For data transmission, STK(R)-MATLAB(R) connectivity was used to send the generated power from STK(R) to MATLAB(R) automatically. Moreover, this program is general-purpose; therefore, it can be applied to nanosatellites that have missions or shapes that are different from those of the satellites in this study. This power simulation tool could be used not only to calculate the suitable power budget when developing the power systems, but also to analyze the remaining energy balance in the satellites.

Study on the Correlation between Grip Strength and EEG (악력 세기와 뇌파의 상관관계에 관한 연구)

  • Kim, Dong-Eun;Park, Seung-Min;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.853-859
    • /
    • 2013
  • The purpose of this study was to identify the correlation between electroencephalography (EEG) and strength, using grip strength. 64-channel EEG data were recorded from five healthy subjects in tasks requiring handgrip contractions of nine levels of MVC (Maximal Voluntary Contraction). We found the ERS (Event-Related Synchronization)/ERD (Event-Related Desynchronization) at the measured EEG data using STFT (Short-Time Furier Transform) and spectral power in the EEG of each frequency range displayed in the graph. In this paper, we identified that the stronger we contracted, the greater the spectral power was increased in the ${\beta}$, ${\gamma}$ wave.

Field Programmable Gate Array Reliability Analysis Using the Dynamic Flowgraph Methodology

  • McNelles, Phillip;Lu, Lixuan
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1192-1205
    • /
    • 2016
  • Field programmable gate array (FPGA)-based systems are thought to be a practical option to replace certain obsolete instrumentation and control systems in nuclear power plants. An FPGA is a type of integrated circuit, which is programmed after being manufactured. FPGAs have some advantages over other electronic technologies, such as analog circuits, microprocessors, and Programmable Logic Controllers (PLCs), for nuclear instrumentation and control, and safety system applications. However, safety-related issues for FPGA-based systems remain to be verified. Owing to this, modeling FPGA-based systems for safety assessment has now become an important point of research. One potential methodology is the dynamic flowgraph methodology (DFM). It has been used for modeling software/hardware interactions in modern control systems. In this paper, FPGA logic was analyzed using DFM. Four aspects of FPGAs are investigated: the "IEEE 1164 standard," registers (D flip-flops), configurable logic blocks, and an FPGA-based signal compensator. The ModelSim simulations confirmed that DFM was able to accurately model those four FPGA properties, proving that DFM has the potential to be used in the modeling of FPGA-based systems. Furthermore, advantages of DFM over traditional reliability analysis methods and FPGA simulators are presented, along with a discussion of potential issues with using DFM for FPGA-based system modeling.

New Design of Duty Cycle Controllable CMOS Voltage-Controlled Oscillator for Low Power Systems (Duty Cycle 조정이 가능한 새로운 저전력 시스템 CMOS Voltage-Controlled Oscillator 설계)

  • Cho, Won;Lee, Sung-chul;Moon, Gyu
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.605-606
    • /
    • 2006
  • Voltage Controlled Oscillator(VCO) plays an important role in today's communication systems. Especially, a Clock Generator(CG) in phase-locked loop(PLL) is usually realized by the VCO. This paper proposes a new VCO with a controllable duty cycle buffer, that can be adopted in low-power high-speed communication systems. Delay cell of the VCO is implemented with gilbert cell. Frequency dynamic range of the VCO is in the range of approximately $50MHz{\sim}500MHz$. Parameters with N-well CMOS 0.18-um process with 1.8V supply voltage was used for the simulations.

  • PDF

Functional Modeling of Nuclear Power Plant Using Multilevel Flow Modeling Concept

  • Park, Jin-Kyun;Chang, Soon-Heung;Cheon, Se-Woo;Lee, Jung-Woon;Sim, Bong-Shick
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.340-345
    • /
    • 1996
  • Because of limited resources of time and information processing capability during abnormal situation, diagnosis is difficult tasks in nuclear power plant (NPP) operators. Moreover since minimizing of adverse consequences according to process abnormalities is vital for the safety of NPP, introducing of diagnosis support systems have particularly emphasized. However, considerable works to develop effective diagnostic support system are not sufficiently fulfilled because of the complexity of NPP is one of the major problems. To cope with this complexity, a lot of model-based diagnosis support systems have considered and implemented worldwide. In this paper, as a prior step to development of model-based diagnosis support systems, primary side of pressurized water reactor is functionally modeled by multilevel flow modeling (MFM) concept. MFM is suitable for complex system modeling and for diagnosis of abnormalities. Furthermore, knowledge-based diagnosis process, of NPP operator could be supported because this diagnosis strategy can represent operator's one.

  • PDF