• Title/Summary/Keyword: Silver-nano process

Search Result 64, Processing Time 0.027 seconds

Comparison Study of the Synthesized Silver Nano-particles using Liquid Phase Reduction Method and Alcohol Reduction Process (액상환원법과 알코올환원법으로 제조한 은나노입자특성 비교에 관한 연구)

  • Son, Eun-Jong;Hwang, Young-Gu;Shin, Yu-Shik;Jeong, Sung-Hoon
    • Textile Coloration and Finishing
    • /
    • v.23 no.2
    • /
    • pp.146-153
    • /
    • 2011
  • Silver nano-particles have been synthesized by liquid phase reduction method and alcohol reduction process. Silver nano-particles of the size 30 ~ 40 nm were formed successfully by alcohol reduction process. The formation, structure, morphology and size of silver nano-particles have been studied using FE-SEM, TEM, XRD, UV-visible spectroscopy. In particular high dispersion stability of the synthesized silver nano-particles could be obtained by PVP binding. Antibacterial activity of Ag/PET master batch sample made from its nano-silver particles showed excellent antibacterial activity against S. aureus and E. coli.

Commercialization & Process Optimization of Protective Film on Nano Silver Transparent Conductive Substrate by Means of Large Scale Roll-to-Roll Coating and Experimental Design (나노실버 투명전도소재 보호필름의 개발 및 공정 최적화와 실험 계획법을 이용한 검증)

  • Park, Kwang-Min;Lee, Ji-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.813-820
    • /
    • 2015
  • We have studied commercialization and process optimization of protective film on transparent conductive coated substrate, nano silver on flexible PET (poly ethylene terephthalate), by means of roll-to-roll micro-gravure coater. Nanosilver on flexible PET substrate is potential materials to replace ITO (indium tin oxide). Protective film is most important to maintain unique silver pattern on top of transparent PET. PSA pressure sensitive adhesives) was developed solely for nano silver on PET and protective film was successfully laminated. We have optimized all process conditions such as coating thickness, line speed and aging time & temperature via experimental design. Transparent conductive film and its protective film developed in this research are commercially available at this moment.

Application of Inkjet Technology in Flat Panel Display

  • Ryu, Beyong-Hwan;Choi, Young-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.913-918
    • /
    • 2005
  • It is expected that the inkjet technology offers prospect for reliable and low cost manufacturing of FPD (Flat Panel Display). This inkjet technology also offers a more simplified manufacturing process for various part of the FPD than conventional process. For example, recently the novel manufacturing processes of color filter (C/F) in LCD, or RGB patterning in OLED by inkjet printing method have been developed. This elaborates will be considered as the precious point of manufacturing process for the mass production of enlarged-display panel with a low price. On this point of view, we would like to review the status of inkjet technology in FPD, with some results on forming micro line by inkjet patterning of suspension type silver nano ink as below. We have studied the inkjet patterning of synthesized aqueous silver nano-sol on interface-controlled ITO glass substrate. Furthermore, we designed the conductive ink for direct inkjet patterning on bare ITO glass substrate. The first, the highly concentrated polymeric dispersant-assisted silver nano sol was prepared. The high concentration of batch-synthesized silver nano sol was possible to 40 wt%. At the same time the particle size of silver nanoparticles was below $10{\sim}20nm$. The second, the synthesized silver nano sol was inkjet - patterned on ITO glass substrate. The connectivity and width of fine line depended largely on the wettability of silver nano sol on ITO glass substrate, which was controlled by surfactant. The relationship was understood by wetting angle. The line of silver electrode as fine as $50{\sim}100\;{\mu}m$ was successfully formed on ITO glass substrate. The last, the direct inkjet-patternable silver nano sol on bare ITO glass substrate was designed also.

  • PDF

Effect of Raising Process of Warp-knitted Fabric Containing Silver Nano-particles (기모공정에 따른 나노은입자함유 경편성물의 제품 특성에 관한 연구)

  • Son, Eun-Jong;Jung, Sung-Hoon;Hwang, Young-Gu;Jung, Hyun-Mi
    • Textile Coloration and Finishing
    • /
    • v.22 no.4
    • /
    • pp.356-361
    • /
    • 2010
  • This study was aimed to investigate the antibacterial efficiency of silver nano-particles and the dyeing properties of a brushed warp-knitted fabric. The properties of the brushed warp-knitted fabric containing silver nano-particle by field production processes were evaluated by analyzing its silver contents, antibacterial activity, color difference, exhaustion curve, fastness and tearing strength. Bacterial reduction ratio amounts to 91.4 and 99.9 for Staphylococcus aureus and Klebsiella pneumoniae respectively. As the brushed pile length of its fabrics is longer, the exhaution rate of disperse dye becomes higher. The brushing process of its fabrics reduces the tearing strength. The results indicate that the brushed warp knitted fabric containing silver nano-particle can be a practically promising product.

Synthesis of Nano-Colloidal Silica Coated with Silver (은을 코팅한 Nano-Colloidal Silica의 합성)

  • Lee, Joo-Heon;Lim, Yoon-Hee;Ham, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • The self assembled silver process and silver coating process after surface reforming for silica particle, were investigated to coat the silver to colloidal silica. The effects of silver amounts and reductant amounts on silver coating efficiencies were investigated. The silver coating process after surface reforming for silica particle using MPTS (3-Mercaptopropyl trimethoxysilane) and APTS (3-Aminopropyl trimethoxysilane), showed the higher coating efficiency and better antibacterial effect than the self assembled silver process.

The application of Nano-paste for high efficiency back contact Solar cell (고효율 후면 전극형 태양전지를 위한 나노 Paste의 적용에 대한 연구)

  • Nam, Donghun;Lee, Kyuil;Park, Yonghwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.53.2-53.2
    • /
    • 2010
  • In this study, we focused on our specialized electrode process for Si back-contact crystalline solar cell. It is different from other well-known back-contact cell process for thermal aspect and specialized process. In general, aluminum makes ohmic contact to the Si wafer and acts as a back surface reflector. And, silver is used for low series resistance metal grid lines. Aluminum was sputtered onto back side of wafer. Next, silver is directly patterned on the wafer by screen printing. The sputtered aluminum was removed by wet etching process after rear silver electrode was formed. In this process, the silver paste must have good printability, electrical property and adhesion strength, before and after the aluminum etching process. Silver paste also needs low temperature firing characteristics to reduce the thermal budget. So it was seriously collected by the products of several company of regarding low temperature firing (below $250^{\circ}C$) and aluminum etching endurance. First of all, silver pastes for etching selectivity were selected to evaluate as low temperature firing condition, electrical properties and adhesive strength. Using the nano- and micron-sized silver paste, so called hybrid type, made low temperature firing. So we could minimize the thermal budget in metallization process. Also the adhesion property greatly depended on the composition of paste, especially added resin and inorganic additives. In this paper, we will show that the metallization process of back-contact solar cell was realized as optimized nano-paste characteristics.

  • PDF

Fabrication of silver stabilizer layer by coating process using nano silver paste on coated conductor (나노실버페이스트를 사용하는 코팅공정에 의한 coated conductor의 은 안정화층 제조)

  • Lee, Jong-Beom;Kim, Byeong-Joo;Kim, Hye-Jin;Yoo, Yong-Su;Lee, Hee-Gyoun;Hong, Gye-Won
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.1-4
    • /
    • 2009
  • Mechanical and electrical properties of silver stabilizer layer of coated conductor, which as prepared with nano silver paste as starting materials, have been investigated, Nano silver paste was coated on a YBCO film by dip coating process at a diping speed of 20m/min. Coated film was dried in air and heat treated at $400{\sim}700^{\circ}C$ in an oxygen atmosphere. Adhesion strength between YBCO and silver layer was measured by a tape est(ASTM D 3359). Hardness and electrical conductivity of the samples were measured by pencil hardness test (ASTM D 3363) and volume resistance test by LORESTA-GP (MITSHUBISHD, respectively. The sample heat-treated at $500^{\circ}C$ showed poor adhesion 1B, but samples heat treated at higher than $600^{\circ}C$ showed enhanced adhesion of 5B. The silver layer heat-treated at $700^{\circ}C$ showed the high hardness value larger than 9 H, low volume resistance, surface resistance value as well as superior current carrying capacity compared to sputtered silver. SEM observations showed that a dense silver layer was formed with a thickness of about $2{\mu}m$. Dip coated silver layer prepared by using nano silver paste showed superior electrical and mechanical characteristics.

The Study of Nano-texturing Process for Crystalline Silicon Solar Cell Using Ag Catalyst Layer (결정질 실리콘 태양전지의 Ag 촉매층을 이용한 나노 텍스쳐링 공정에 관한 연구)

  • Oh, Byoung-Jin;Yeo, In-Hwan;Kim, Min-Young;Lim, Dong-Gun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.58-61
    • /
    • 2012
  • In our report a relatively simple process for fast nano-texturing of p-type(100) CZ- silicon surface using silver catalyzed wet chemical etching in aqueous hydrofluoric acid (HF) and hydrogen peroxide solution($H_2O_2$) at room temperature. The wafers were saw-damaged by NaOH(6 wt%) at $60^{\circ}C$ for 150s. To obtain a nano-structured black surface, a thin layer of silver with thickness of 1 - 10 nm was deposited on the surfaces by evaporation system. After this process the samples were etched in HF : $H_2O_2$ : $H_2O$ = 1:5:10 at room temperature for 80s - 220s. Due to the local catalytic of the Ag clusters, this treatment results in the nano-scale texturing on the surface. This resulted in average reflectance values less than 9% after the silver on the surface of the wafers were removed.

Fabrication of Conductive Pastes for Induction Cookware with the Variation of the Contents of Silver Powder and Glass Frit (인덕션 조리용기용 도전성 Paste의 Silver 및 Glass Frit 함량 변화에 따른 미세구조 및 전기적 특성 고찰)

  • Gu, Hyun Ho;Kim, Bong Ho;Yoon, Young Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.11
    • /
    • pp.690-695
    • /
    • 2016
  • Induction cooktop has a great attention due to its safety, quick heating and cleanness compared to gas oven. However, the materials for induction cookware is limited to steel or stainless-steel which has the magnetic property. Recently, it has been tried to apply various porcelain to induction cookware after printing the silver layer on the bottom of cookware plates and co-firing at high temperature. Glass frits are added in the silver paste to improve an adhesion force between porcelain materials containers and transferred silver layer. The hybrid silver pastes for induction cookware requires the proper electrical resistance and the thermal conductivity with base plates. After sintering process at $800^{\circ}C$, a part of melted glass migrated to the porcelain and the rest of the glass frit was exposed to the surface. It was confirmed that most of the glass frit formed an adhesion layer between the porcelain and transferred silver layer that enhances the adhesion force.

A Study on Dyeing Properties and Color Research of Knitted Fabric and by Scoria

  • Chung, In-Hee
    • Journal of Fashion Business
    • /
    • v.11 no.3
    • /
    • pp.79-86
    • /
    • 2007
  • The purpose of this study is to understand the dyeing properties and color analysis of fabrics knitted with ramie, cotton, wool and acrylic by using scoria and to analyze whether the knitted fabrics can be used for industrialization by measuring color fastness after and before sliver-nano process. The following is the conclusions. Firstly, when ramie fabric regarding cotton, wool and acrylic was dyed at the temperature of $50^{\circ}C$ for fifteen minutes by using 10, 25, 50, 100g/ $\ell$ of scoria, dyeing absorption gradually increased up to 50g/ $\ell$, and over the point of 50g/ $\ell$ it showed slow increase. Secondly, regarding saturation, among ramie fabric, wool, cotton and acrylic, wool appears as the lowest brightness. Therefore, it can be dyed with bright color and the highest value. In terms of the value of chromaticity, wool also emerges as the lowest brightness. On the contrary, acrylic showed the lightest red as it had the value of the smallest b. Cotton takes the lightest yellow as the b value of the cotton showed the smallest. Thus, scoria dyestuff is a material that showed strong red and yellow on knitted fabric mixed with wool that is the biggest a. b value. Thirdly, in terms of dyeing fastness, sunlight fastness did not show noticeable differences before and after silver-nano processes, but in terms of washing and friction fastness, the material processed by silver-nano indicated that all knitted fabrics are over 4-5 point. which means silver-nano process can be effective for the industrial applications. As mentioned above, as a result of dyeing knitted fabrics with scoria, this study found a possibility of dyeing in the fabric materials, and if there is deeper dyeing experiments, fastness experiments and speculations, it might be possible to be a big issue just like loess and charcoal.