• Title/Summary/Keyword: Silver carbonate

Search Result 22, Processing Time 0.024 seconds

Electroplating on the Lead Frames Fabricated from Domestic Copper Plate (국산동판을 사용한 리드프레임 도금기술에 관한 연구)

  • Jang, Hyeon-Gu;Lee, Dae-Seung
    • Journal of the Korean institute of surface engineering
    • /
    • v.19 no.3
    • /
    • pp.92-108
    • /
    • 1986
  • An electroplating on the lead frame fabricated from domestic copper plate was studied experimentally. In this study, nickel was plated on the thin copper lead frame and silver layer was coated on the nickel film in the cyanide electrolyte. The effect of process variables such as current density, plating time, coating thickness and flow rate of electrolytic solution on the properties of coating was investigated. Some samples on each step were fabricated during electroplating. The results obtained from polarization measurement, observation of SEM photograph, adhesion test of coating and microhardness test are as follows. On silver plating, polarization resistance of potentiostatic cathodic polarization curve is reduced as the flow rate of Ag electrolytic solution increases. And above resistance is also reduced when the minor chemicals of sodium cyanide and sodium carbonate are added in potassium silver cyanide bath. The reduced polarization resistance makes silver deposition on the cathode easy. An increase in the current density and the coating thickness causes the particle size of deposit to coarsen, and consequently the Knoop microhardness of the coating decreases. On selective plating an increase in the flow rate of plating solution lead to do high speed plating with high current density. In this case, the surface morphology of deposit is of fine microstructure with high Knoop hardness. An increasing trend of the adhesion of coating was shown with increasing the current density and flow rate of electrolytic solution.

  • PDF

Non-destructive Analysis of Snail Trail on Silver Grid Line in PV Module (비파괴 분석법을 적용한 결정질 태양전지 모듈의 Snail trail 현상 연구)

  • Kim, Dajung;Kim, Namsu;Hwang, Kyung-Jun;Lee, Ju Ho;Jeong, Sinyoung;Jeong, Dae Hong
    • Current Photovoltaic Research
    • /
    • v.2 no.2
    • /
    • pp.63-68
    • /
    • 2014
  • In recent years, discoloration defects, called as snail trail, have been observed at many crystalline photovoltaic modules after a period of time ranging from several months to several years after initial installation. It has been reported that this phenomenon doesn't impact on the performance of photovoltaic modules, but it can be detected through simple visual inspection. The origin and detailed mechanism for the formation have not been identified. In this study, non-destructive analysis by Raman spectroscopy has been carried out to investigate the origin of this phenomenon. In parallel, destructive analysis by scanning electron microscopt and transmission electron microscopy was also performed in order to confirm the results from non-destructive method. Through the extensive analysis, it was found that the main cause for discoloration is the formations of $Ag_2CO_3$ and $AgC_2H_3O_2$. Detailed mechanism for the formation of these particles was indentified through systematic studies.

Improvement of Solar Cell Efficiency by Modification of Cellulose Acetate Propionate for Ag paste (전극용 Ag Paste의 Cellulose Acetate Propionate(CAP) 개질에 따른 태양전지 효율 향상)

  • Kim, Dong Min;Lim, Jong Chan;Kim, Jin Hyun;Cha, Sang-Ho;Lee, Jong-Chan
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.227-234
    • /
    • 2018
  • We investigate the effect of the modification of cellulose acetate propionate as an organic vehicle for silver paste on solar cell efficiency. For the modification of cellulose acetate propionate, poly(ethylene glycol) is introduced to the hydroxyl groups of a cellulose acetate propionate backbone via esterification reaction. The chemical structure and composition of poly(ethylene glycol) functionalized cellulose acetate propionate is characterized by Attenuated total reflectance Fourier transform infrared, $^1H$ nuclear magnetic resonance, differential scanning calorimetry and thermogravimetric analysis. Due to the effect of structural change for poly(ethylene glycol) functionalized cellulose acetate propionate on the viscosity of silver paste, the solar cell efficiency increases from 18.524 % to 18.652 %. In addition, when ethylene carbonate, which has a structure similar to poly(ethylene glycol), is introduced to cellulose acetate propionate via ring opening polymerization, we find that the efficiency of the solar cell increases from 18.524 % to 18.622 %.

Taxonomy of 16 indigenous ciliate species(Protozoa, Ciliophora) from South Korea

  • Kim, Ji Hye;Omar, Atef;Moon, Ji Hye;Jung, Jae-Ho
    • Journal of Species Research
    • /
    • v.9 no.4
    • /
    • pp.427-442
    • /
    • 2020
  • We collected indigenous Korean ciliate species from diverse aquatic and terrestrial habitats in 2018 and 2019. The morphology of these ciliates was revealed based on the observations of living cells, and protargol-impregnated and/or silver carbonate-impregnated specimens. During this study, we found 16 previously unrecorded Korean ciliate species, which are as follows: 1) class Heterotrichea - Stentor introversus; 2) class Spirotrichea - Aspidisca orthopogon, Amphisiella sinica, Epiclintes auricularis rarisetus, Apokeronopsis wrighti, Pseudokeronopsis carnea, Trachelostyla pediculiformis, Strombidium apolatum, and Varistrombidium kielum; 3) class Phyllopharyngea - Chlamydodon obliquus, Dysteria aculeata, and Hartmannula angustipilosa; 4) class Litostomatea - Paraspathidium apofuscum; and 5) class Oligohymenophorea - Frontonia angusta solea, Metanophrys sinensis, and Uronemita binucleata. Here, we provide a diagnosis for each species with a brief remark. Among them, the infraciliature of the poorly known species, Stentor introversus and Dysteria aculeata, is described for the first time. Further, we revise the Korean population of Pseudokeronopsis pararubra, which was previously misidentified as Pseudokeronopsis carnea.

Gold and Silver Mineralization of the Pungjeong Vein, Dadeok Mine (다덕광산(多德鑛山) 풍정맥(楓井脈)의 금은광화작용(金銀鑛化作用))

  • Park, Hee-In;Choi, Suck-Won;Lee, Sang-Sun
    • Economic and Environmental Geology
    • /
    • v.21 no.3
    • /
    • pp.269-276
    • /
    • 1988
  • Ore deposits of Dadeok mine, the largest in the Bonghwa gold mining district, are composed of numerous gold and silver-bearing quartz veins emplaced in granite batholith. Mineralization of the Pungjeong vein, one of the representative vein in the mine was investigated. K-Ar age of sericite in the vein is $84{\pm}5$ Ma. Hypogene 6pen-space filling can be devided into four paragenetic stages; (1) fine grained quartz and carbonate; (2) quartz and carbonates with base metal sulfides, electrum, native silver, argentite, polybasite, freibergite, pyrargyrite, and Cu-Ag-Fe-S minerals; (3) quartz with base metal sulfides; (4) quartz and calcite with or without pyrite. Composition of electrum ranges from 44.17 to 56.50 atomic % Ag. Meanwhile FeS content of sphalerite coexisting with elctrum in stage II range from 0.01 to 1.67 mol. %. Homogenization temperatures for quartz and sphalerite of stage II ($239^{\circ}$ to $310^{\circ}C$), quartz of stage III ($206^{\circ}$ to $255^{\circ}C$) and quartz and calcite of stage IV ($232^{\circ}$ to $253^{\circ}C$) show little time-space variation during mineralization. Salinities of the fluid inclusions range from 5.5 to 12.8wt% NaCI in stage II, 7.3 to 12.3wt% in stage III and 4.5 to 8.0wt% in stage IV. Based on the homogenization temperatures, Fe content of sphalerite and Ag content of electrum, tempera ture and sulfur fugacity for stage II are estimated to be $208^{\circ}$ to $310^{\circ}C$ and $10^{-9.2}-10^{-12.8}$ bars, respectively.

  • PDF

Hydrothermal Alteration and Its Cenetic Implication in the Casado Volcanic-hosted Epithermal Cold-Silver Deposit: Use in Exploration (가사도 화산성 천열수 금은광상의 열수변질대 분포 및 성인: 탐사에의 적용)

  • 김창성;최선규;최상훈;이인우
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.205-220
    • /
    • 2002
  • The gold-silver deposits in the Casado district were formed in the sheeted and stockwork quartz veins which fill the fault fractures in volcanic rocks. K-Ar dating of alteration sericite (about 70 Ma) indicates a Late Cretaceous age for ore mineralization. These veins are composed of quartz, adularia, carbonate, and minor of pyrite, sphalerite, chalcopyrite, galena, Ag-sulfosalts (argentite, pearceite, Ag-As-Sb-S system), and electrum. These veins are characterized by chalcedonic, comb, crustiform and feathery textures. Based on the hydrothermally altered mineral assemblages, regional alteration zoning associated with mineralization in the Gasado district is defined as four zones; advanced argillic (kaolin mineral-alunite-quartz), argillic (kaolin mineral-quartz), phyllic (quartz-sericite-pyrite) and propylitic (chlorite-carbonate-quartz-feldspar-pyroxene) zone. Phyllic and propylitic zones is distributed over the study area. However, advanced argillic zone is restricted to the shallow surface of the Lighthouse vein. Compositions of electrum ranges from 14.6 to 53.7 atomic % Au, and the depositional condition for mineralization are estimated in terms of both temperature and sulfur fugacity: T=245。$~285^{\circ}C$, logf $s_2$=$10^{-10}$ ~ $10^{-12}$ Fluid inclusion and stable isotope data show that the auriferous fluids were mixed with cool and dilute (158。~253$^{\circ}C$ and 0.9~3.4 equiv. wt. % NaCl) meteoric water ($\delta^{18}$ $O_{water}$=-10.1~8.0$\textperthousand$, $\delta$D=-68~64$\textperthousand$). These results harmonize with the hot-spring type of the low-sulfidation epithermal deposit model, and strongly suggest that Au-Ag mineralization in the Gasado district was formed in low-sulfidation alteration type environment at near paleo-surface.

Epithermal Gold-Silver Mineralization and Depositional Environment of Carbonate-hosted Replacement Type Baegjeon Deposits, Korea (탄산염암 층준교대형 백전광상의 천열수 금-은 광화작용과 생성환경)

  • Lee, Chan Hee;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.29 no.2
    • /
    • pp.105-117
    • /
    • 1996
  • The Baegjeon Au-Ag and Sb deposits, small of disseminated-type gold deposits are formed as a result of epithermal processes associated a shallow-seated Cretaceous Yeogdun granitoids intrusion. The orebodies are formed by the replacement of carbonate minerals in thin-bedded oolitic limestone beds favorable for mineralization within the upper-most Cambrian Pungchon Limestone Formation. The mineralization can be recognized one stage, ore minerals composed of base metal sulfides, electrum, AgSb-S, Ag-Cu-S, and Sb-S minerals. Gold-bearing minerals consist of electrum and submicroscopic invisible gold in pyrite and arsenopyrite. The composition of electrums ranges from 33.58 to 63.48 atomic % Ag. Fluid inclusion studies reveal that ore fluids were low saline $NaCl-CO_2-H_2O$ system. Temporary fluid mixing and boiling occured in later stage. Fluid inclusion data indicates the homogenization temperatures and salinities of NaCl eqivalent wt% were 176 to $246^{\circ}C$ and from 0.0 to 4.8 wt%, respectively. And $-logfs_2$, of mineralization obtained by thermodynamic considerations as 12.4 to 13.8 atm. The ${\delta}^{34}S_{H_2S}$, values of hydrothermal sulfides were calculated to be 6.8 to 10.2‰ which was of sedimentary origin. The ${\delta}^{18}O_{H_2O}$ and ${\delta}^{13}C_{CO_2}$, range from -3.9 to 9.6‰, from -1.1 to -2.2‰, and ${\delta}D$ range from -89 to -118‰, respectively. The Au deposition during mineralization seems to have occurred as a result of decrease of temperature, $fs_2$, $fo_2$, and pH probably due to oxidation by meteoric water mixing, which destabilized original $Au(HS)^-{_2}$. The mineralization of the Baegjeon deposits is similar to the Carlin-type deposits characterized by sediments-hosted epithermal bedding replacement disseminated gold deposits.

  • PDF

Hydrothermal Au-Ag Mineralization of the Oknam Mine in the Northern Sobaegsan Massif (북부 소백산 육괴 지역에 부존하는 옥남 광산의 열수 금-은 광화작용)

  • Yun, Seong-Taek;Chi, Se-Jung;So, Chil-Sup;Heo, Chul-Ho
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.389-398
    • /
    • 1998
  • The Au-Ag deposit of the Oknam mine occurs as gold-silver-bearing rhodochrosite veins in biotite schist and phyllite of the Precambriam Yulri Group. Five stages of ore deposition are recognized, each showing a definite mineral assemblage. General mineral parageneses in veins (stage III) associated with gold and silver vary inwardly from the vein margin: arsenopyrite + pyrite $\Rightarrow$ sphalerite+chalcopyrite+galena+gold $\Rightarrow$ ga1ena+Ag-bearing minerals. Fluid inclusion data indicate that temperature and salinity of ore fluids overally decreased with time: $345^{\circ}{\sim}240^{\circ}C$ and 3.4~7.8 wt. % NaCl equiv during stage I (quartz vein mineralization), $313^{\circ}{\sim}207^{\circ}C$ and 2.3~8.7 wt.% NaCl equiv during manganese-bearing carbonate stages (II and III), and $328^{\circ}{\sim}213^{\circ}C$ and 3.6-5.4 wt.% NaCl equiv during stage IV (quartz vein mineralization). The ore fluids probably evolved through repeated pulses of boiling and later mixing with cooler and more dilute meteoric waters. Fluid inclusion data and geologic arguments indicate that pressures during the mineralization were in the range of 90 to 340 bars. Gold occurs as silver-rich electrums (21 to 29 atom. % Au) and was deposited at temperatures between $300^{\circ}$ and $240^{\circ}C$. Thermochemical calculations suggest that gold was deposited as a combined result of increase in pH and decreases in temperature, $fs_2$ and $fo_2$.

  • PDF

Genetic Environments of Au-Ag-bearing Gasado Hydrothermal Vein Deposit (함 금-은 가사도 열수 맥상광상의 성인)

  • Ko, Youngjin;Kim, Chang Seong;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.53-61
    • /
    • 2022
  • The Gasado Au-Ag deposit is located within the south-western margin of the Hanam-Jindo basin. The geology of the Gasado is composed of the late Cretaceous volcaniclastic sedimentary rocks and acidic or intermediate igneous rocks. Within the deposit area, there are a number of hydrothermal quartz and calcite veins, formed by narrow open space filling along subparallel fractures in the late Cretaceous volcaniclastic sedimentary rock. Vein mineralization at the Gasado is characterized by several textural varieties such as chalcedony, drusy, comb, bladed, crustiform and colloform. The textures have been used as exploring indicators of the epithermal deposit. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz veins; stage II, barren carbonate veins) considering major tectonic fracturing event. Stage I, at which the precipitation of Au-Ag bearing minerals occurred, is further divided into three substages (early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of pyrite and pyrrhotite with minor chalcopyrite, sphalerite and electrum; middle, characterized by introduction of electrum and base-metal sulfides with minor argentite; late, marked by argentite and native silver. Au-Ag-bearing mineralization at the Gasado deposit occurred under the condition between initial high temperatures (≥290℃) and later lower temperatures (≤130℃). Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur (≈10-10.1 to ≤10-18.5atm) by evolution of the Gasado hydrothermal system with increasing paragenetic time. The Gasado deposit may represents an epithermal gold-silver deposit which was formed near paleo-surface.

Gold-Silver Mineralization of the Geojae Area (거제(巨濟)지역 금(金)-은(銀)광상의 광화작용(鑛化作用) 연구)

  • Choi, Seon-Gyu;Chi, Se-Jung;Yun, Seong-Taek;Koh, Yong-Kwon;Yu, Jae-Shin
    • Economic and Environmental Geology
    • /
    • v.22 no.4
    • /
    • pp.303-314
    • /
    • 1989
  • The electrum-silver-sulfide mineralization of the Geojae island area was deposited in three stages (I, II, and carbonate) of quartz and calcite veins that crosscut Late Cretaceous volcanic rocks and granodiorite(83 m.y.). Stages I and II were terminated by the onset of fractunng and breCCIation events. Fluid inclusion data suggest that the gold-sulfide-bearing stages I and II each evolved from an initial high temperature( near $370^{\circ}C$) to a later low temperature(near $200^{\circ}C$). Each of those stages represented a separate mineralizing system which cooled prior to the onset of the next stage. The relationship between homogenization temperature and salinity in stages I and II suggests a complex history of boiling, cooling and dilution. Evidence of boiling indicates a pressure of < 100 bars, corresponding to a depth of 500 to 1,250m assummg hthostatlc and hydrostatic pressure regimes, respectively. Fluid inclusion and mineralogical evidence suggest that the electrum-silver mineralization was deposited at a temperature of $220-260^{\circ}C$ from ore fluids with salinities between 1.9 and 8.1 equivalent wt.% NaCl. Total sulfur concentration is estimated to be $10^{-3}$ to $10^{-4}$ molal. The estimated $fs_2$ and $fo_2$ range from $10^{-11.8}$ to $10^{-14}$ atm and $10^{-35}$ to $10^{-36}$ atm, respectively. The chemical conditions indicate that the dominant sulfur species in the ore forming fluids was a reduced form($H_2S$). Rapid cooling and dilution of ore-forming fluids by mixing with less-evolved meteoric waters led to gold-silver deposition through the breakdown of the bisulfide complex($Au(HS)_2$) as the activity of $H_2S$ decreased.

  • PDF