• Title/Summary/Keyword: Silver Particles

Search Result 252, Processing Time 0.026 seconds

Double Resonance Perfect Absorption in a Dielectric Nanoparticle Array

  • Hong, Seokhyeon;Lee, Young Jin;Moon, Kihwan;Kwon, Soon-Hong
    • Current Optics and Photonics
    • /
    • v.1 no.3
    • /
    • pp.228-232
    • /
    • 2017
  • We propose a reflector-type perfect absorber with double absorption lines using electric and magnetic dipoles of Mie resonances in an array of silicon nanospheres on a silver substrate. In the visible range, hundreds of nanometer-sized nanospheres show strong absorption lines up to 99%, which are enhanced by the interference between Mie scattering and reflections from the silver substrate. The air gap distance between the silicon particles and silver substrate controls this interference, and the absorption wavelengths can be controlled by adjusting the diameter of the silicon particles over the entire range of visible wavelengths. Additionally, our structure has a filling factor of 0.322 when the absorbance is nearly 100%.

Effect of Mechanical Milling Parameters on the Particle Size of Silver Flake (은 플레이크 분말의 입자크기에 미치는 기계적 밀링 공정변수의 영향)

  • Lee, Gil-Geun;Jeong, Hae-Young
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.307-312
    • /
    • 2014
  • This study is focused on investigating the relation between the particle size of silver flake powder and mechanical milling parameters. Mechanical milling parameters such as ball size, impeller rotation speed and milling time of the attrition ball-mill were controlled to produce silver flake powder. The particle size of the silver flake powder increased with increasing ball size and impeller rotation speed. The change of the particle size of the silver flake powder with mechanical milling parameters was analyzed based on balls motion in the mill container of the attrition ball-mill. The silver flake particles were formed at the elastic deformation area of the ball due to the collision between balls. The change of the particle size of the silver flake powder with mechanical milling parameters well consists with the change of the collision energy of ball with parameters mentioned above.

Biosynthesis of Silver Nanoparticles by Phytopathogen Xanthomonas oryzae pv. oryzae Strain BXO8

  • Narayanan, Kannan Badri;Sakthivel, Natarajan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1287-1292
    • /
    • 2013
  • Extracellular biogenic synthesis of silver nanoparticles with various shapes using the rice bacterial blight bacterium Xanthomonas oryzae pv. oryzae BXO8 is reported. The synthesized silver nanoparticles were characterized by UV-Vis spectroscopy, powder X-ray diffractometry (XRD), scanning electron microscopy, energy dispersive X-ray spectrometry, and high-resolution transmission electron microscopy (HR-TEM). Based on the evidence of HR-TEM, the synthesized particles were found to be spherical, with anisotropic structures such as triangles and rods, with an average size of 14.86 nm. The crystalline nature of silver nanoparticles was evident from the bright circular spots in the SAED pattern, clear lattice fringes in the high-resolution TEM images, and peaks in the XRD pattern. The FTIR spectrum showed that biomolecules containing amide and carboxylate groups are involved in the reduction and stabilization of the silver nanoparticles. Using such a biological method for the synthesis of silver nanoparticles is a simple, viable, cost-effective, and environmentally friendly process, which can be used in antimicrobial therapy.

Controlling Size and Distribution of Silver Nanoparticles Generated in Inorganic Silica Nanofibers Using Poly(vinyl pyrrolidone)

  • Min, Kyung-Dan;Park, Won-Ho;Youk, Ji-Ho;Kwark, Young-Je
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.626-630
    • /
    • 2008
  • Poly(vinyl pyrrolidone) was used successfully to control the size and distribution of silver nanoparticles generated on inorganic silica nanofibers. The inorganic nanofibers were electro spun using sol-gel chemistry of silicates, and the diameter of the prepared nanofibers was unaffected by adding up to 7% of poly(vinyl pyrrolidone). The silver ions, in the form of silver nitrate, were introduced into the silica nanofibers and reduced to metallic silver by ultraviolet irradiation with a subsequent thermal treatment. The size of the generated silver particles was decreased dramatically by adding poly(vinyl pyrrolidone). The size of the silver nanoparticles was 73 nm when no poly(vinyl pyrrolidone) was added but 23 nm with the addition of only 1% of poly(vinyl pyrrolidone). The extent of reduction could be checked by determining the concentration of silver ions leached into water from the silica nanofibers. After thermal treatment of the silica nanofibers, more than 99% of the silver remained in the nanofibers, indicating almost complete reduction of the silver ions to silver metal.

SERS on Silver Formed in Anodic Aluminum Oxide Nanotemplates

  • 주영;서정상
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.808-810
    • /
    • 1995
  • A strong SERS effect has been observed on silver surfaces which were prepared by Ag deposition in anodic aluminum oxide nanotemplates and subsequent partial removal of the oxide layers. The advantage of these surfaces for SERS studies is that the controlled size and dispersion of Ag particles can be achieved.

An Experimental Study of Environmental Effects on the Rolling Resistance of Bearings Coated by Soft Metallic Films (연금속 박막이 코팅된 베어링의 구름 저항 거동에 미치는 분위기의 영향에 대한 실험적 고찰)

  • 양승호;공호성;윤의성;김대은
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.1-6
    • /
    • 1998
  • An experimental study was performed to discover the effect of environmental conditions on the rolling resistance behavior of pure silver and lead coated 52100 bearing steel. Pure silver and lead coatings were produced by a thermal evaporation coating method. Experiments using a thrust ball bearing-typed rolling test-rig were performed under vacuum, dry air and controlled humidity conditions. Results showed that agglomeration of particles were suppressed in vacuum environment and resulted in low and stable rolling resistance by shakedown phenomena. Also, humidity related closely to the agglomeration of particles and the rolling resistance after the failure of coated layer.

An Experimental Study of Environmental Effects on the Rolling Resistance of Bearing Surfaces Coated by Soft Metallic Films (연금속 박막이 코팅된 베어링 표면의 구름 저항 거동에 미치는 분위기의 영향에 대한 실험적 고찰)

  • 양승호;공호성;윤의성;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.47-54
    • /
    • 1998
  • An experimental study was performed to discover the effect of environmental conditions on the rolling resistance behavior of pure silver and lead coated 52100 bearing steel. Pure silver and lead coating were produced by a thermal evaporation coating method. Experiments using a thrust ball bearing-typed rolling test-rig were performed under vacuum, dry air and controlled humidity conditions. Results showed that agglomeration of particles were prevented in vacuum environment and as it showed low and stable rolling resistance by shakedown phenomena. Also, humidity relates closely to the agglomeration of particles and increased the rolling resistance after the failure of coated layer.

  • PDF

Charge/Discharge Characteristics of Lithium ion Secondary Battery Using Ag-deposited Graphite as Anode Active Material (은 담지한 흑연을 부극 활물질로 이용한 Lithium ion 2차전지의 충방전 특성)

  • 김상필;조정수;박정후;윤문수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.9
    • /
    • pp.727-732
    • /
    • 1998
  • Ag-deposited graphite powder was prepared by a chemical reduction method of metal particles onto graphite powder. X-ray diffraction observation of Ag-deposited graphite powder revealed that silver existed in a metallic state, but not in an oxidized one. From SEM measurement, ultrafine silver particles were highly dispersed on the surface of graphite particles. Cylindrical lithium ion secondary battery was manufactured using Ag-deposited graphite anodes and $LiCoO_2$ cathodes. The cycleability of lithium ion secondary battery using Ag-deposited graphite anodes was superior to that of original graphite powder. The improved cycleability may be due to both the reduction of electric resistance between electrodes and the highly durable Ag-graphite anode.

  • PDF

Exposing Zebrafish to Silver Nanoparticles during Caudal Fin Regeneration Disrupts Caudal Fin Growth and p53 Signaling

  • Yeo, Min-Kyeong;Pak, Se-Wha
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.311-317
    • /
    • 2008
  • Zebrafish were exposed to commercial silver nanoparticles (${\sim}$10-20 nm) at 0.4 and 4 ppm during cadual fin regeneration. The silver was in the $Ag^+$ ionic form. Fin regeneration was slow in the group exposed to the lower concentration. The cadual fin, gill, and muscle were assayed after 48 hours and subjected to histological analysis. In all tissues sampled, fish exposed to nanoparticles exhibited infiltration, large mitochondria with empty matrices, and accumulation of nano-sized silver in blood vessels. The results suggested mitochondrial damage and induction of inflammation. Microarray analysis of RNA from young zebrafish (52 hours post-fertilization) that were exposed to nanometer-sized silver particles, showed alteration in expression of the p53 gene pathway related to apoptosis. Gene expression changes in the nanoparticle-treated zebrafish led to phenotypic changes, reflecting increased apoptosis.