• Title/Summary/Keyword: Silver Particles

Search Result 252, Processing Time 0.021 seconds

Extinction Coefficient of Ag Nanofluids Manufactured by Chemical Reduction Method (화학적 환원법으로 제작한 은나노유체의 흡광계수)

  • Lee, S.H.;Kim, H.J.;Choi, T.J.;Kim, S.B.;Kang, Y.J.;Kim, D.J.;Jang, S.P.
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.53-58
    • /
    • 2015
  • In this study, we prepare the Ag nanofluids synthesized by the chemical reduction method and measure the extinction coefficient of those nanofluids at a wavelength of 632.8 nm. The Ag nanofluids are synthesized by the chemical reduction method using silver nitrate ($AgNO_3$) and sodium borohydride ($NaBH_4$) in water and ethylene glycol (EG). For stable dispersion of Ag particles in the base liquids, polyvinyl pyrrolidone (PVP) is added as a surfactant. The extinction coefficient of manufactured Ag nanofluids is measured by an in-house developed measurement system at the wavelength of 632.8 nm. The results show that the extinction coefficient of water-based and EG-based Ag nanofluids is linearly increased with respect to the particle loadings. Moreover, it is shown that the extinction coefficient of EG-based Ag nanofludis is higher than that of water-based Ag nanofluids. Finally we compare the experimental results with both the Maxwell-Garnett model and Rayleigh scattering approximation model, and they demonstrate that the Rayleigh scattering approximation model is reasonably predict the extinction coefficient of Ag nanofluids using hydraulic diameter of silver nanoparticle.

Micro Patterning of Nano Metal Ink for Printed Circuit Board Using Inkjet Printing Technology (잉크젯 프린팅 기술을 이용한 나노 금속잉크의 인쇄회로기판용 미세배선 형성)

  • Park, Sung-Jun;Seo, Shang-Hoon;Joung, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.89-96
    • /
    • 2007
  • Inkjet printing has become one of the most attractive manufacturing techniques in industry. Especially inkjet printing technology will soon be part of the PCB (Printed Circuit Board) fabrication processes. Traditional printing on PCB includes screen printing and photolithography. These technologies involve high costs, time-consuming procedures and several process steps. However, by inkjet technology manufacturing time and production costs can be reduced, and procedures can be more efficient. PCB manufacturers therefore willingly accept this inkjet technology to the PCB industry, and are quickly shifting from conventional to inkjet printing. To produce the printed circuit board by the inkjet technology, it must be harmonized with conductive nano ink, printing process, system, and inkjet printhead. In this study, micro patterning of conductive line has been investigated using the piezoelectric printhead driven by a bipolar voltage signal is used to dispense 20-40 ${\mu}m$ diameter droplets and silver nano ink which consists of 1 to 50 nm silver particles that are homogeneously suspended in an organic carrier. To fabricate a conductive line used in PCB with high precision, a printed line width was calculated and compared with printing results.

Electrical Properties of Ag-coated Conductive Yarns Depending on Physical and Chemical Conditions (물리화학적 조건에 따른 은코팅 전도사의 전기적 특성)

  • Ryu, Jong-Woo;Jee, Young-Joo;Kim, Hong-Jae;Kwon, Seo-Yoon;Yoon, Nam-Sik
    • Textile Coloration and Finishing
    • /
    • v.23 no.1
    • /
    • pp.43-50
    • /
    • 2011
  • Electrically conductive yarn coated with silver particles are widely used to make smart wear but recent studies on smart fabrics are focused on measuring method of electrical characteristics and improving technologies of its electric properties. Also durability of conductive yarn with environmental change was also important work to make smart fabric. We compared resistance changes of silver coated conductive yarns under various physical and chemical conditions such as repeated strain, heat exposure and pH for basic informations on smart wear manufacturing process. And we deduct that repeated strain among the physical conditions was most effective factors on yarn resistance change and the low resistance change was observed with increasing the number of filaments in identical yarn fineness.

Synthesis of Silver Nanoparticles by Microemulsion (마이크로에멀젼을 이용한 은 나노입자의 합성)

  • Yoon, In-Young;Park, Heung-Jo;Kwack, Kwang-Soo;Jeong, Noh-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.118-124
    • /
    • 2003
  • Silver nanoparticles was synthesized by the method of W/O microemulsions with AOT (bis(2-ethylhexyl) sodium sulfosuccinate). The nucleation particle growth and aggregation was controlled by the droplet exchange process. The intermicellar exchange reaction is varied by changing the AOT and the $H_2O$ concentration. The synthesized W/O microemulsions was found to give the nanoparticles, which was confirmed by SEM, TEM, particle-size-analyzer, and UV-spectrometer. The most stable particles was obtained at 0.056 mole AOT solution, and the particle size distribution was found in the range from 27 to 31 nm. The mean particle size was reduced by adding Tween 20 significantly, and distribution was found from 14 to 16 nm. And, It's size was reduced by cosurfactants as toluene and benzyl alcohol. In case of toluene and benzyl alcohol, the range of particle size was found 7${\sim}$11 nm and 8${\sim}$12 nm.

Bragg Gratings Generated by Coupling of Surface Plasmons Induced on Metal N anoparticles

  • Song, Seok-Ho;Won, Hyong-Sik;Choi, Ki-Young;Oh, Cha-Hwan;Kim, Pill-Soo;Shin, Dong-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.6-12
    • /
    • 2004
  • Diffraction Bragg gratings consisting of metal (silver) nanoparticles are generated inside a soda-lime glass substrate. After ion-exchanging and annealing processes in the glass, the silver nanoparticles are first formed with the particle diameters of 10 nm ∼ 30 nm. By interfering two CW laser beams at ∼ 60 ${\mu}{\textrm}{m}$ deep under the surface of the nanoparticles-dispersed glass, Bragg gratings with thickness of 15 ${\mu}{\textrm}{m}$ and period of 3.5 ${\mu}{\textrm}{m}$ are generated. Diffraction efficiency of the gratings formed by two TE-polarized beams is three times higher than that by two TM-polarized beams. From this polarization dependence, we have found that strong coupling of the surface plasmons induced on the metal particles may contribute dominantly to generate the diffraction grating.

Physico.chemical Properties of Inorganic Materials Currently Used as Root Medium Components for Crop Production in Korean Plant Factories (국내에서 식물공장용 배지 재료로 유통되는 무기물의 토양 물리화학적 특성)

  • Shin, Bo Kyoung;Son, Jung Eek;Choi, Jong Myung
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.336-342
    • /
    • 2012
  • Inorganic materials were commonly used as container media in domestic plant factories. Objective of this research was to secure the information in soil physical and chemical properties of inorganic materials such as vermiculites and perlites. To achieve this, 12 gold and silver vermiculites from China, Zimbabwe, and South Africa and 5 perlites from China were collected based on the marketing grades (MG) in particle sizes and analyzed for determination of their characteristics. The percentage of particles larger than $710{\mu}m$, in China perlite MG 3~5 mm, China silver vermiculites MG > 8 mm and MG 3~8 mm were 99.9%, 99.8%, and 99.7%, respectively, which were much higher than 28.4% in China gold vermiculite MG 0.3~1.0 mm, 14.0% in perlite MG < 1.0 mm, and 12.6% of Zimbabwe silver vermiculite MG < 1.0 mm. The container capacities of perlite MG < 1.0 mm and South Africa silver vermiculite MG 0.25~1.0 mm were 72.0% and 71.1%, respectively. The air space in China silver vermiculite MG 3~8 mm was 49.3% which was higher than other materials tested. However, the China gold and silver vermiculites MG 0.3~1 mm had 3.5% and 2.4% in air space indicating that possible problems could occur in soil aeration when they are used for container media. The percentage of easily available and buffering water of China gold vermiculite MG 0.3~1 mm and perlite MG < 1.0 mm were the highest among test materials. The ranges of pH and electrical conductivity were 6.36 to 10.7 and 0.032 to $0.393dS{\cdot}m^{-1}$ in vermiculites and 7.78 to 8.62 and 0.030 to $0.041dS{\cdot}m^{-1}$ in perlite, respectively. The cation exchange capacity of China silver vermiculite MG 0.3~1 mm were $14.7cmol{\cdot}kg^{-1}$ that was 10 times as high as $0.34cmol{\cdot}kg^{-1}$ in perlite MG 1~2.5 mm. The vermiculites had the higher contents of exchangeable cations such as Ca, K, and Na, than those of perlites.

Synthesis of Ag-Cu Composite Powders for Electronic Materials by Electroless Plating Method (무전해 도금법을 이용한 전자소재용 은-구리 복합분말의 제조)

  • Yoon, C.H.;Ahn, J.G.;Kim, D.J.;Sohn, J.S.;Park, J.S.;Ahn, Y.G.
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.221-226
    • /
    • 2008
  • Silver coated copper composite powders were prepared by electroless plating method by controlling the activation and deposition process variables such as feeding rate of silver ions solution, concentration of reductant and molar ratio of activation solution $(NH_4OH/(NH_4)_2SO_4)$ at room temperature. The characteristics of the product were verified by using a scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic absorption (A.A.). It is noted that completely cleansing the copper oxide layers and protecting the copper particles surface from hydrolysis were important to obtain high quality Ag-Cu composite powders. The optimum conditions of Ag-Cu composite powder synthesis were $NH_4OH/(NH_4)_2SO_4$ molar ratio 4, concentration of reductant 15g/l and feeding rate of silver ions solution 2 ml/min.

Electrical and Mechanical Properties of Inkjet-Printed Ag films (잉크젯 인쇄 Ag 배선의 전기적, 기계적 특성에 관한 연구)

  • Kim, In-Young;Song, Young-Ah;Jung, Jea-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.550-550
    • /
    • 2007
  • Inkjet printed silver films were fabricated using nano particles with the size of ~ 20 nm. We can obtain very good conducting silver films with the resistivity of $7.3\;{\mu}{\Omega}{\cdot}cm$ even though they were sintered at the very low temperature of $200^{\circ}C$. The electrical and mechanical properties of inkjet printed silver lines were measured with the sintering time and analyzed with the micro-structural development. The measured resistivity of inkjet printed Ag films were $57.4\;{\sim}\;7.3\;{\mu}{\Omega}{\cdot}cm$. And their hardness and Young's modulus were 0.98 ~ 1.72 GPa and 32 ~ 71 GPa, respectively.

  • PDF

One-step phyto-mediated fabrication of silver nanoparticles and its anti-microbial properties

  • Velmurugan Palanivel;Sung-Chul Hong;Veera Ravi Arumugam;Sivakumar Subpiramaniyam;Pyong-In Yi;Seong-Ho Jang;Jeong-Min Suh;Eun-Sang Jung;Je-Sung Park
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.391-397
    • /
    • 2023
  • This manuscript describes the one-step eco-friendly green fabrication of silver nanoparticles (AgNPs) through the in-situ bio-reduction of an aqueous solution of silver nitrate using Syzygium aromaticum leaf extract. UV-vis spectroscopy shows a characteristic SPR peak around 442 nm. FTIR spectroscopy showed that the AgNPs were capped with bioactive phyto-molecules. TEM images revealed oval and spherical particles with a mean diameter of ~12.6 nm. XRD analysis revealed crystalline and face-cantered cubic AgNPs. The phytosynthesized AgNPs showed broad-spectrum anti-microbial activity against two foodborne pathogenic bacteria, Listeria monocytogenes and Staphylococcus aureus. The AgNPs showed a prominent ability to inhibit biofilms formed by L. monocytogenes and S. aureus in laboratory conditions through a crystal violet assay. The results suggest that the AgNPs could be a novel nanotool to develop effective antimicrobial and anti-biofilm agents in food preservation.

Effects of Size, Impurities, and Citrate Capping on the Toxicity of Manufactured Silver Nano-particles to Larval Zebrafish (Danio rerio)

  • Kim, Jungkon;Park, Yena;Lee, Sangwoo;Seo, Jihyun;Kwon, Dongwook;Park, Jaehong;Yoon, Tae-Hyun;Choi, Kyungho
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.4
    • /
    • pp.369-375
    • /
    • 2013
  • Objectives: This study was conducted to identify factors determining the toxicity of manufactured silver nano-particles (AgNPs) on aquatic organisms. Methods: For this purpose, we prepared several AgNPs with varied characteristics, including hydrodynamic size (nano-$^{ABC}Ag^{Cit}\;vs$-sized-$^{ABC}Ag^{Cit}$), impurities ($^{ABC}Ag$ stock vs $^{ABC}Ag$), and citrate capping ($^{ABC}Ag^{Cit}$), using a commercially available manufactured AgNP ($^{ABC}Ag$ stock). Acute tests were conducted using larval zebrafish (Danio rerioI). In addition, in order to determine the ecotoxicological potentials of various capping agents, toxicity tests were conducted with microbes, waterfleas, and fish for eight different capping agents that are used for NPs. Results: The toxicity of AgNPs in terms of 96 h fish $LC_{50}$ increased in the following order: $^{ABC}Ag$ stock < $^{ABC}Ag=^{ABC}Ag^{Cit}=nano-^{ABC}Ag^{Cit}$ < ${\mu}$-sized-$^{ABC}Ag^{Cit}$ < $AgNO_3$. After removing impurities by dialysis, 96 h $LC_{50}$ value decreased significantly from $126.6{\mu}g/L$ (95% confidence intervals [CI]: 107.0-146.2) ($^{ABC}Ag$ stock) to $78.6{\mu}g/L$ (CI: 72.7-84.8) ($^{ABC}Ag$). For ${\mu}$-sized-$^{ABC}Ag^{Cit}$ (ranging between 3.9 and 40.6 nm) and $^{ABC}Ag^{Cit}$ (40.6 nm and $9.1{\mu}m$), the 96 h $LC_{50}$ of the former ($43.9{\mu}g/L$, CI: 36.0-51.7) was approximately two-fold lower than that of the latter ($87.0{\mu}g/L$, CI: 73.5-100.3). Conclusions: In this study, we found that for acute lethality, the contribution of impurities and particle size was significant, but that of citrate was negligible.