• Title/Summary/Keyword: Silver Mirror Reaction

Search Result 3, Processing Time 0.023 seconds

SERS Study of Phenol Red Using the Silver Mirror Substrates (Silver Mirror Substrate를 이용한 Phenol Red의 SERS 연구)

  • Lee, Chul-Jae;Kang, Jae-Soo;Han, In-Soo;Lee, Sang-Mu
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.1
    • /
    • pp.7-12
    • /
    • 2003
  • It was recently reported that the SERS effect of the silver mirror substrate made by Tollen's method is much superior to that of other substrates. In this study, the experiments for comparison were done, where we checked the characteristics of silver mirror substrate made by different reductants, time interval and thermal treatments. We also surveyed correlations in substrates changes, the influence of SERS enhancement, and adsorbed orientation of phenol red.

The Study of Surface Plasmonic Bands Using Block Copolymer Nanopatterns (블록공중합체 나노패턴을 이용한 표면 플라즈몬 연구)

  • Yoo, Seung Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.88-93
    • /
    • 2017
  • It is important to develop a simple method oftuning localized surface plasmon resonance(LSPR) properties, due to their numerous applications. In addition, the careful examination of the shape, size and combination of metal nanoparticles is useful for understanding the relation between the LSPR properties and metal nanostructures. This article describes the dependence of theLSPR properties on the arrays of metal nanoparticles obtained from a block copolymer(BCP) micellar thin film. Firstly, two different Au nanostructures, having a dot and ring shape, were fabricated using conventional block copolymer micelle lithography. Then, Ag was plated on the Au nanostructures through the silver mirror reaction technique to obtain Au/Ag bimetallic nanostructures. During the production of these metallic nanostructures, the processing factors, such as the pre-treatment by ethanol, silver mirror reaction time and removal or not of the BCP, were varied. Once the Au nanoparticles were synthesized, Ag was properly plated on the Au, providing two distinguishable characteristic plasmonic bands at around 525nm for Au and around 420nm for Ag, as confirmed bythe UV-vis measurements. However, when a small amount of Au seed nanoparticles, which accelerate the Ag plating speed,was formed by usinga block copolymer with a relatively highmolecular weight, all of the Au surfaces were fully covered by Ag during the silver mirror reaction, showing only the characteristic peak for Ag at around 420nm. The Ag plating technique on Au nanoparticles pre-synthesized from a block copolymer is useful to study the LSPR properties carefully.

Research on the Gas Diffusion Electrode for the Brine Electrolysis (염수 전해용 가스확산 전극에 관한 연구)

  • Lee, D.H.;Lee, G.H.;Han, J.W.;Lim, J.T.;Lee, O.S.;Lee, J.D.
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.1
    • /
    • pp.7-12
    • /
    • 2002
  • The gas diffusion electrodes as oxygen cathodes f3r the brine electrolysis process were investigated. The gas diffusion electrode consists of a reaction layer, a gas diffusion layer, and a current distributor. The reaction layer was made from hydrophilic carbon black, hydrophobic carbon black, PTFE(polyterafluoroethylene), and Ag catalyst loaded by the silver mirror reaction or impregnation method. The gas diffusion layer was made from hydrophobic carbon black and PTFE, and Ni mesh was used as the current distributor in the reaction layer. The result that the gas diffusion electrode $(10wt\%\;Ag\;catalyst\;and\;20wt\%\;binder)$ manufactured by applying impregnation method to the carbon black f3r reaction layer showed the better performance was obtained from experiments. From the half-cell test, the measured overpotential of this oxygen cathode was about 700mV, And through the electrolysis experiment under the condition of $80^{\circ}C,\;32wt\%$ NaOH, and $300mA/cm^2$, the electrolysis voltage of this electrode was about 2.2 V, The gas diffusion electrodes manufactured in the present research were capable of continuous operations for three months.