• Title/Summary/Keyword: Silver Catalyst

Search Result 47, Processing Time 0.023 seconds

Development of Hydrogen Peroxide Thruster adopted Silver Catalyst (은을 촉매로 사용하는 과산화수소 추력기 개발)

  • Lee, Su-Lim;Lee, Choong-Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.67-73
    • /
    • 2007
  • In recent years hydrogen peroxide has become considerably more attractive as a green rocket propellant so a laboratory model of hydrogen peroxide thruster adopted silver catalyst and a test facility has been developed to research a hydrogen peroxide propulsion. The design scheme of thruster and the test data are presented including ignition delay, efficiency of characteristic exhaust velocity. As a result, 95% of efficiency of characteristic exhaust velocity was obtained at steady state operation condition.

The Conduction Properties of Epoxy Resin Composition According to the Content Change of Spherical Hollow Type Silver (중공형 구형 은입자의 함량변화에 따른 에폭시 수지조성물의 전도특성 연구)

  • Kim, Whan Gun;Lim, Ryun Woo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.23-26
    • /
    • 2012
  • The monodispersed polystyrene spheres were prepared by emulsion polymerization in aqueous alcohol system. They coated with silver by reduction of silver ion percolated on the surface of them. The spherical hollow type silver has been prepared by dissolving polystyrene with toluene. Epoxy resin compositions with spherical hollow type silver were manufactured, which were composed of a bisphenol F type epoxy resin (RE-304S), amine type hardener (Kayahard AA), and 1-benzyl 2-methyl imidazole (1B2MI) as catalyst. The electrical conductivity with silver content ratio were investigated after cure, the percolation threshold weight ratio for conductance in this epoxy resin system was obtained above the 70 wt% of silver.

Photocatalytic performance of graphene/Ag/TiO2 hybrid nanocomposites

  • Lee, Jong-Ho;Kim, In-Ki;Cho, Donghwan;Youn, Jeong-Il;Kim, Young-Jig;Oh, Han-Jun
    • Carbon letters
    • /
    • v.16 no.4
    • /
    • pp.247-254
    • /
    • 2015
  • To improve photocatalytic efficiency, graphene/Ag/TiO2 nanotube catalyst was synthesized, and its surface characteristics and photocatalytic activity investigated. For deposition of Ag nanoparticles on the TiO2 nanotubes, a polymer compound containing CH3COOAg/poly(L-lactide) was utilized, and the silver particles were precipitated by reducing the silver ions during the annealing process. Graphene deposition on the Ag/TiO2 nanotubes was achieved using an electrophoretic deposition process. Based on the dye degradation results, it was determined that the photocatalytic efficiency was significantly affected by deposition of silver particles and graphene on the TiO2 catalyst. Highly efficient destruction of the dye was obtained with the new graphene/Ag/TiO2 nanotube photocatalyst. This may be attributed to a synergistic effect of the graphene and Ag nanoparticles on the TiO2 nanotubes.

Catalytic Decomposition of Hydrogen Peroxide for Application on Micro Propulsion (마이크로 추력기 응용을 위한 과산화수소 촉매 분해 반응)

  • An Sung-Yong;Lee Jong-Kwang;Rang Seong-Min;Kwon Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.1-8
    • /
    • 2005
  • An experimental investigation of a microthruster that uses hydrogen peroxide as a monopropellant is described. The study comprises of preparation method of silver as a catalyst and performance evaluation of a mesoscale reactor. Reduction of silver in $H_2\;at\;500^{\circ}C$ resulted in the best reactivity of all the treatment method tested. A mesoscale reactor was built to find the optimum configuration for full decomposition of propellant. The catalyst bed was made of a glass wafer substrate sputtered with silver and had a length of 20 mm. We measured the conversion rate with varying feed rate of $H_2O_2$ and preheating temperature. With the feed rate of $H_2O_2$, the space time within the reactor varies as well. For the bed length of 20 mm, space time more than 480 s was required for full conversion.

Removal of Inorganic Odorous Compounds by Scrubbing Techniques using Silver Nano-particles (나노 은 입자 세정법을 이용한 무기 악취물질의 제거)

  • Shin, Seung-Kyu;Huyen, Tran;Song, Ji-Hyeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.6
    • /
    • pp.674-681
    • /
    • 2008
  • Silver as a metal catalyst has been used to remove odorous compounds. In this study, silver particles in nano sizes ($5{\sim}30nm$) were prepared on the surface of $NaHCO_3$, the supporting material, using a sputtering method. The silver nano-particles were dispersed by dissolving $Ag-NaHCO_3$ into water, and the dispersed silver nano-particles in the aqueous phase was applied to remove inorganic odor compounds, $NH_3$ and ${H_2}O$, in a scrubbing reactor. Since ammonia has high solubility, it was removed from the gas phase even by spraying water in the scrubber. However, the concentration of nitrate (${NO_3}^-$) ion increased only in the silver nano-particle solution, implying that the silver nano-particles oxidized ammonia. Hydrogen sulfide in the gas phase was rapidly removed by the silver nano-particles, and the concentration of sulfate (${SO_4}^{2-}$) ion increased with time due to the oxidation reaction by silver. As a result, the silver nano-particles in the aqueous solution can be successfully applied to remove odorous compounds without adding additional energy sources and producing any harmful byproducts.

Hydrogen Peroxide Gas Generator with Dual Catalytic Bed for Non-preheating Start-up (비예열 시동특성을 갖는 이원 촉매 베드 과산화수소 가스발생기)

  • Lim, Ha-Young;An, Sung-Yong;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.163-167
    • /
    • 2007
  • Silver is widely used for catalytic decomposition of hydrogen peroxide, but start-up at room temperature is difficult and cannot withstand at high temperature. In this paper, to overcome these short-comings, a dual catalytic bed which consists of a vaporizer catalyst and a high temperature catalyst was studied. Platinum was selected as the vaporizer catalyst and perovskite type catalyst was selected for the high temperature catalyst. Preliminary test demonstrated start-up capability with non-preheating at room temperature and good thermal stability at high temperature.

  • PDF

A Suitable Dichromate Reflux Method for the Analysis of Chlorous Wastewater (COD 분석시 염소이온의 간섭작용에 관한 연구)

  • 김종규;김남천;민달기
    • Journal of Environmental Health Sciences
    • /
    • v.15 no.2
    • /
    • pp.33-40
    • /
    • 1989
  • Dichromate reflux method for COD analysis is one of the useful and precise way to solve the organic content of the wastewater. But the standard procedure for COD is not entirely satisfactory for sample containing appreciable amounts of inhibiting substance, especially chloride ion. Under the conditions of the established test, a big disadvantage of the method is that dichromate oxidizes chloride quantitatively to chlorine. When it is necessary to use silver sulfate as a catalyst in the COD procedure, chloride must be removed before the addition of the catalyst. Silver sulfate and mecuric sulfate forms a precipitate of AgCl and HgCl$_{2}$ separately which is not completely oxidized during the test and, therefore, cannot be corrected for. So, we evaluate and compensate the amount of chloride oxidation in the absence of chemicals during the experimental procedure. Calculation of COD is made using the following reviced formula: real COD = tested COD - 0.2277Cl.

  • PDF

Design and Performance Characteristics of Catalyst Bed for Hydrogen Peroxide Thruster (과산화수소 추력기의 촉매베드 설계 및 성능 특성)

  • Lee, Su-Lim;Park, Joo-Hyuk;Lee, Choon-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.185-189
    • /
    • 2007
  • A hydrogen peroxide monopropellant thruster has been developed to research performance characteristics of silver catalyst bed. The experiment data and evaluation result from the fire tests with five catalyst beds are presented A scheme of catalyst arrangement is presented for high concentrated hydrogen peroxide.

  • PDF