• Title/Summary/Keyword: Silicon vapor

검색결과 671건 처리시간 0.038초

ECR-PECVD로 증착한 a-Si : H/Si으로 부터의 가시 PHotoluminescence (Visible Photoluminescence from Hydrogenated Amorphous Silicon Substrates by Electron Cyclotron Resonance Plasma Enhanced Chemical Vapor Deposition)

  • 심천만;정동근;이주현
    • 한국재료학회지
    • /
    • 제8권4호
    • /
    • pp.359-361
    • /
    • 1998
  • $SiH_{4}$를 반응물질로 사용하여 electron cyclotron resonance plasma enhanced chemical vapor deposition(ECR-PECVD)로 실리콘 기판위에 증착한 수소화 비정질 실리콘(a-Si:H)으로부터 가시 photoluminescence(PL) 가 관찰되었다. a-si:H/Si로 부터의 PL은 다공질실리콘으로부터의 PL과 유사하였다. 급속열처리에 의해 $500^{\circ}C$에서 2분간 산소분위기에서 어닐링된 시편의 수소함량은 1~2%로 줄어들었고 시편은 가시 PL을 보여주지 않았는데 이는 a-Si:H의 PL과정에서 수소가 중요한 역할을 한다는 것을 뜻한다. 증착된 a-Si:H의 두께가 증가함에 따라 PL의 세기는 감소하였다. $SiH_{4}$를 사용하여 ECR-PECVD에 의해 Si상에 증착된 a-Si:H로부터의 가시 PL은 Si과 증착된 a-Si:H막 사이에 증착이 이루어지는 동안에 형성된 수소화실리콘으로부터 나오는 것으로 추론된다.

  • PDF

USE OF SINGLE PRECURORS FOR THE PREP ARATION OF SILICON CARBIDE FILMS

  • Lee, Kyunf-Won;Yu, Kyu-Sang;Kim, Yun-Soo
    • 한국표면공학회지
    • /
    • 제29권5호
    • /
    • pp.467-473
    • /
    • 1996
  • Heteroepitaxial growth of cubic silicon carbide films on Si(001) and Si(111) substrates at temperatures 900-$1000^{\circ}C$ has been achieved by high vacuum chemical vapor deposition using the single precursor 1, 3-disilabutane without carrying out the carbonization process of the substrate surfaces. The deposition temperature range is much lowered compared with conventiontional chemical vapor deposition where separate sources for silicon and carbon are employed. The deposition procedure is quite simple and safe. The qualities of the films were found to be very good judging from the results obtained by various characterization techniques including reflection high energy electron diffraction, X-ray diffraction, X-ray pole figure analysis, Rutherford backscattering spectrometry, Auger depth profiling, and transmission electron diffraction.

  • PDF

Substrate Temperature Dependence of Microcrystalline Silicon Thin Films by Combinatorial CVD Deposition

  • Kim, Yeonwon
    • 한국표면공학회지
    • /
    • 제48권3호
    • /
    • pp.126-130
    • /
    • 2015
  • A high-pressure depletion method using plasma chemical vapor deposition (CVD) is often used to deposit hydrogenated microcrystalline silicon (${\mu}c-Si:H$) films of a low defect density at a high deposition rate. To understand proper deposition conditions of ${\mu}c-Si:H$ films for a high-pressure depletion method, Si films were deposited in a combinatorial way using a multi-hollow discharge plasma CVD method. In this paper the substrate temperature dependence of ${\mu}c-Si:H$ film properties are demonstrated. The higher substrate temperature brings about the higher deposition rate, and the process window of device quality ${\mu}c-Si:H$ films becomes wider until $200^{\circ}C$. This is attributed to competitive reactions between Si etching by H atoms and Si deposition.

The Effects of Impurities in Silicon Nitride Substrate on Tribological Behavior between Diamond Film and Silicon Nitride Ball

  • Lim, Dae-Soon;Kim, Jong-Hoon
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.20-25
    • /
    • 1995
  • Diamond films were prepared by a hot filament vapor deposition onto polycrystal silicon nitride substrates. Different kinds of silicon nitride containing CaO and $Fe_{2}O_{3}$ were manufactured to investigate the impurity effect of substrate on the morphology of diamond films and their wear behaviors. Nucleation rates and morphologies of diamond films deposited on various kinds of silicon nitride were compared. The highest nucleation rate was observed in a substrate containing 1% of CaO. Wear tests were performed with a silicon nitride ball on the disk geometry to investigate the tribological behavior of diamond film against silicon nitride. This study demonstrated that different morphologies of diamond film due to substrate impurities produced different wear behavior against silicon nitride.

Modeling on Hydrogen Effects for Surface Segregation of Ge Atoms during Chemical Vapor Deposition of Si on Si/Ge Substrates

  • Yoo, Kee-Youn;Yoon, Hyunsik
    • Korean Chemical Engineering Research
    • /
    • 제55권2호
    • /
    • pp.275-278
    • /
    • 2017
  • Heterogeneous semiconductor composites have been widely used to establish high-performance microelectronic or optoelectronic devices. During a deposition of silicon atoms on silicon/germanium compound surfaces, germanium (Ge) atoms are segregated from the substrate to the surface and are mixed in incoming a silicon layer. To suppress Ge segregation to obtain the interface sharpness between silicon layers and silicon/germanium composite layers, approaches have used silicon hydride gas species. The hydrogen atoms can play a role of inhibitors of silicon/germanium exchange. However, there are few kinetic models to explain the hydrogen effects. We propose using segregation probability which is affected by hydrogen atoms covering substrate surfaces. We derived the model to predict the segregation probability as well as the profile of Ge fraction through layers by using chemical reactions during silicon deposition.

Boron Detection Technique in Silicon Thin Film Using Dynamic Time of Flight Secondary Ion Mass Spectrometry

  • Hossion, M. Abul;Arora, Brij M.
    • Mass Spectrometry Letters
    • /
    • 제12권1호
    • /
    • pp.26-30
    • /
    • 2021
  • The impurity concentration is a crucial parameter for semiconductor thin films. Evaluating the impurity distribution in silicon thin film is another challenge. In this study, we have investigated the doping concentration of boron in silicon thin film using time of flight secondary ion mass spectrometry in dynamic mode of operation. Boron doped silicon film was grown on i) p-type silicon wafer and ii) borosilicate glass using hot wire chemical vapor deposition technique for possible applications in optoelectronic devices. Using well-tuned SIMS measurement recipe, we have detected the boron counts 101~104 along with the silicon matrix element. The secondary ion beam sputtering area, sputtering duration and mass analyser analysing duration were used as key variables for the tuning of the recipe. The quantitative analysis of counts to concentration conversion was done following standard relative sensitivity factor. The concentration of boron in silicon was determined 1017~1021 atoms/㎤. The technique will be useful for evaluating distributions of various dopants (arsenic, phosphorous, bismuth etc.) in silicon thin film efficiently.

LPCVD로 형성된 실리콘 나노점의 전계방출 특성 (Electron Field Emission Characteristics of Silicon Nanodots Formed by the LPCVD Technique)

  • 안승만;임태경;이경수;김정호;김은겸;박경완
    • 대한금속재료학회지
    • /
    • 제49권4호
    • /
    • pp.342-347
    • /
    • 2011
  • We fabricated the silicon nanodots using the low pressure chemical vapor deposition technique to investigate their electron field emission characteristics. Atomic force microscope measurements performed for the silicon nanodot samples having various process parameters, such as, deposition time and deposition pressure, revealed that the silicon nanodots with an average size of 20 nm, height of 5 nm, and density of $1.3\;{\times}\;10^{11}\;cm^{-2}$ were easily formed. Electron field emission measurements were performed with the silicon nanodot layer as the cathode electrode. The current-voltage curves revealed that the threshold electric field was as low as $8.3\;V/{\mu}m$ and the field enhancement factor reached as large as 698, which is compatible with the silicon cathode tips fabricated by other techniques. These electron field emission results point to the possibility of using a silicon-based light source for display devices.

초소형 냉동시스템의 응용을 위한 마이크로 증기 압축기의 개발 및 성능에 관한 연구 (A Study on the Micro Vapor Compressor based on Microfabrication Process for the Application to the Micro Miniature Refrigeration System)

  • 윤재성;최종원;김민수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.477-482
    • /
    • 2006
  • In this study, a micro vapor compressor has been designed, fabricated and tested. The micro vapor compressor was made of silicon substrates and fabricated by micromachining process. The compressor is driven by a piezoelectric actuator which is widely used in microfluidic systems because of its strong force and rapid response. The actuator is a bimorph structure which consists of a silicon membrane and a piezoelectric ceramic film. A simulation work was conducted on the performance characteristics of the compressor. The simulation investigated the flow rate variation under various back pressure conditions. Experimental works were carried out on the operation of a compressor and the test results were compared with the simulation results.

  • PDF

Microstructural study of polycrystalline films prepared by Ni vapor induced crystallization

  • Ahn, Kyung-Min;Lee, Kye-Ung;Ahn, Byung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.715-717
    • /
    • 2006
  • $NiCl_2$ vapor was introduced into conventional furnace to conduct vapor-induced crystallization (VIC) process. We made the metal chloride atmosphere by sublimating the $NiCl_2$ compound. The $NiCl_2$ atmosphere enhanced the crystallization of amorphous silicon thin films. As the result, polycrystalline Si film with large grain size and low metal contamination has been obtained.

  • PDF

Study on the Coupled Effects of Process Parameters on Silicon Growth Using Chemical Vapor Deposition

  • Ramadan, Zaher;Ko, Dong Kuk;Im, Ik-Tae
    • 반도체디스플레이기술학회지
    • /
    • 제18권3호
    • /
    • pp.115-121
    • /
    • 2019
  • Response surface methodology (RSM) is used to investigate the complex coupling effects of different operating parameters on silicon growth rate in planetary CVD reactor. Based on the computational fluid dynamics (CFD) model, an accurate RSM model is obtained to predict the growth rate with different parameters, including temperature, pressure, rotation speed of the wafer, and the mole fraction of dichlorosilane (DCS). Analysis of variance is used to estimate the contributions of process parameters and their interactions. Among the four operating parameters that have been studied, the influences of susceptor temperature and the operating pressure were the most significant factors that affect silicon growth rate, followed by the mole fraction of DCS. The influence of wafer rotation is the least. The validation tests show that the results of silicon deposition rate obtained from the regression model are in good agreement with those from CFD model and the maximum deviations is 2.15%.