• Title/Summary/Keyword: Silicon thin

Search Result 1,697, Processing Time 0.029 seconds

Write-in and Retention Characteristics of Nonvolatile MNOS Memory Devices (비휘발성 MNOS기억소자의 기억 및 유지특성)

  • 이형옥;강창수;이상배;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1991.10a
    • /
    • pp.44-47
    • /
    • 1991
  • Electron injection and memory retention chracteristics of the MNOS devices with thin oxide layer of 23${\AA}$ thick and silicon nitride layer of 1000${\AA}$ thick which are fabricated for this experiment. As a result, pulse amplitude increase oxide current is dominated in linearly increasing region of $\Delta$V$\_$FB/the decreasing region after saturation was due to the increased silicon nirtide current. In low pulse ampiltude $\Delta$V$\_$FB/ is not variated on temperature, but as temperature and pulse amplitude increase. $\Delta$V$\_$FB/ is decreased after saturation. And the decay rate during 10$^4$sec after electron injection was ohiefly dominated by the back tunneling of emission from memory trap to silicon. Memory retention characteristics in V$\_$FB/ stage was better than that of OV retention regardless of injection conditions.

(Various Electionic system Applications by Using Silicon-based Thin Films) (실리콘계 박막을 이용한 다양한 전자시스템 응용)

  • 이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.186.2-189
    • /
    • 2001
  • 요실리콘을 기반으로 하는 박막은 반도체 재료로 Si, Si:Ge, SiC등이 사용되고있으며, 절연박막재료로 SiN, SiOxNy, SiOx 등이 있다. 이들 재료는 국내 반도체 산업의 핵심위치에 있는 물질이다. 한국 산업의 근간이라 할 수 있는 메모리분야에 적용될 뿐만 아니라 TFT-LCD, 태양전지, 각종 센서, X-ray 사진 촬영기 개발에도 응용되고 있다. 본 논문에서는 Silicon-based 박막의 제조기법과 그에 따른 다양한 실리콘 박막 실리콘 트랜지스터를 이용한 능동형 액정과 유기발광 화소제어 활용, 센서 응용 부분에서 태양전지, X-ray 촬영기활용 분야에서 기술현황 시장분석을 통해 차세대 연구개발의 방향을 제시하고자 한다. 현재 국내에서 실리콘 박막의 가장 큰 응용 분야는 메모리 소자의 평판디스플레이의 TFT-LCD 시장이다. 그러나 실리콘 박막으로 가능한 응용분야는 아직 산업계에서 열매를 맺지 못한 분야가 더 많고 실제로 적용할 수 있는 분야의 다양함을 본 논문을 통해 소개한다.

  • PDF

Characterization of Solid Phase Crystallization in Sputtered and LFCVD Amorphous Silicon Thin Film (스퍼터링 및 저압화학기상증착 비정질 실리곤 박막의 고상 결정화 특성)

  • 김형택
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.89-93
    • /
    • 1995
  • Effects of hydrogenation in amorphous silicon rile growths on Solid Phase Crystallization (SPC) was investigated using x-ray diffractometry, energy dispersive Spectroscopy, and Raman spectrum. Interdiffusion of barium(Ba) and aluminum(Al) compounds of corning substrate was observed in both of rf sputtering and LFCVD films under the low temperature(580$^{\circ}C$) annealing. Low degree of crystallinity resulted from the interdiffusion was obtained. Highly applicable degree of crystallinity was obtained through the mechanical damage induced surface activation on amorphous silicon films. X-ray diffraction intensity of (111) orientation was used to characterize the degree of crystallinity of SPC. Nucleation and growth rate in SPC could be controllable through the employed surface treatment. IIydrogenated LPCVD films showed the superior crystallinity to non-hydrogenated sputtering films. Insignificant effects of activation treatment in sputtered film was of activation treatment in sputtered film was observed on SPC.

  • PDF

Micro-tribological Properties of Coated Silicon Wafer (코팅된 실리콘웨이퍼의 Microtribological 특성)

  • 차금환;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.91-96
    • /
    • 1998
  • In recent years, the tribological behavior of coated ceramic material has been the topic of much interest. Particularly, the understanding of the tribological performance of thin film under light load is important for potential applications in MEMS. In this work under light load and low speed, the tribological behavior of coated silicon was investigated. The results show that both adhesive and abrasive wear occur depending on the sliding condition. Also the effect of humidity on friction was influenced by the apparent ares of contact between the two surfaces. Finally, undulations on the silicon wafer were found to be effective in trapping wear particles.

  • PDF

The Substrate Effects on Kinetics and Mechanism of Solid-Phase Crystallization of Amorphous Silicon Thin Films

  • Song, Yoon-Ho;Kang, Seung-Youl;Cho, Kyoung-Ik;Yoo, Hyung-Joun
    • ETRI Journal
    • /
    • v.19 no.1
    • /
    • pp.26-35
    • /
    • 1997
  • The substrate effects on solid-phase crystallization of amorphous silicon (a-Si) films deposited by low-pressure chemical vapor deposition (LPCVD) using $Si_2H_6$ gas have been extensively investigated. The a-Si films were prepared on various substrates, such as thermally oxidized Si wafer ($SiO_2$/Si), quartz and LPCVD-oxide, and annealed at 600$^{\circ}C$ in an $N_2$ ambient for crystallization. The crystallization behavior was found to be strongly dependent on the substrate even though all the silicon films were deposited in amorphous phase. It was first observed that crystallization in a-Si films deposited on the $SiO_2$/Si starts from the interface between the a-Si and the substrate, so called interface-interface-induced crystallization, while random nucleation process dominates on the other substrates. The different kinetics and mechanism of solid-phase crystallization is attributed to the structural disorderness of a-Si films, which is strongly affected by the surface roughness of the substrates.

  • PDF

Low temperature plasma deposition of microcrystalline silicon films for bottom gate thin film transistors

  • Cabarrocas, P.Roca i;Djeridane, Y.;Abramov, A.;Bui, V.D.;Bonnassieux, Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.56-60
    • /
    • 2006
  • We review our studies on the growth of microcrystalline silicon films by the standard PECVD technique. In situ spectroscopic ellipsometry studies allow the optimization of the complex film structure with respect to competing aspects of the growth process. Fine tuning the hydrogen flux, the ion energy, and the nature of the species contributing to deposition produces unique films with a fully crystallized interface with silicon nitride. These materials have been successfully incorporated in bottom gate TFTs which present mobility values in the range of 1 to 3 $cm^2/V.s$, and stable characteristics when submitted to a bias stress. The stability of these TFTs makes them suitable for driver applications in AMLCDs as well as pixel elements in OLED displays.

  • PDF

Preparation of Boron Doped Fullerene Film by a Thermal Evaporation Technique using Argon Plasma Treatment and Its Electrochemical Application

  • Arie, Arenst Andreas;Jeon, Bup-Ju;Lee, Joong-Kee
    • Carbon letters
    • /
    • v.11 no.2
    • /
    • pp.127-130
    • /
    • 2010
  • Boron doped fullerene $C_{60}$ ($B:C_{60}$) films were prepared by the thermal evaporation of $C_{60}$ powder using argon plasma treatment. The morphology and structural characteristics of the thin films were investigated by scanning electron microscope (SEM), Fourier transform infra-red spectroscopy (FTIR) and x-ray photo electron spectroscopy (XPS). The electrochemical application of the boron doped fullerene film as a coating layer for silicon anodes in lithium ion batteries was also investigated. Cyclic voltammetry (CV) measurements were applied to the $B:C_{60}$ coated silicon electrodes at a scan rate of $0.05\;mVs^{-1}$. The CV results show that the $B:C_{60}$ coating layer act as a passivation layer with respect to the insertion and extraction of lithium ions into the silicon film electrode.

Acute Angle Etching of silicon Dioxide Layer (이산화실리콘 층의 예각부식)

  • 최연익
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.4
    • /
    • pp.84-91
    • /
    • 1985
  • Acute angle etching Process of thermally grown silicon dioxide layer has been Proposed by depositing a thin layer of silicafilm on the thermal oxide layer. As densification temper-ature of silicafilm is varied from 175$^{\circ}C$ to 1,15$0^{\circ}C$, taper angles from 3$^{\circ}$ to 40$^{\circ}$ are ob-tained. Analytical model of the acute angle etching process has also been presented and etched profile equations of the silicon dioxide layer have been derived using format's principle of lease time. Etched profiles obtained from scanning electron microscope analysis show good agreement with the theoretically calculated profiles.

  • PDF

Focused Ion Beam Milling for Nanostencil Lithography (나노스텐실 제작을 위한 집속이온빔 밀링 특성)

  • Kim, Gyu-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.245-250
    • /
    • 2011
  • A high-resolution shadow mask, a nanostencil, is widely used for high resolution lithography. This high-resolution shadowmask is often fabricated by a combination of MEMS processes and focused ion beam (FIB) milling. In this study, FIB milling on 500-nm-thin SiN membrane was tested and characterized. 500 nm thick and $2{\times}2$ mm large membranes were made on a silicon wafer by micro-fabrication processes of LPCVD, photolithography, ICP etching and bulk silicon etching. A subsequent FIB milling enabled local membrane thinning and aperture making into the thinned silicon nitride membrane. Due to the high resolution of the FIB milling process, nanoscale apertures down to 60 nm could be made into the membrane. The nanostencil could be used for nanoscale patterning by local deposition through the apertures.

Investigation of Micro-tribological Properties of Coated Silicon Wafer under Light Load (코팅된 실리콘웨이퍼의 미소 마찰마멸특성에 관한 연구)

  • 차금환;김대은
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.29-38
    • /
    • 1999
  • In recent years, the tribological behavior of coated ceramic material has been the issue of much interest. Particularly, the understanding of the tribological performance of thin film under light load is important for its potential in applications of MEMS. The friction and wear behavior of ceramic material that occur at light load depends on several factors such as surface roughness, contact area and material properties. In this work, the tribological behavior of coated silicon under light load and low speed was investigated. Particularly, the effects of coated materials, humidity and undulated surface were also studied. The results show that the effect of humidity on fiction was influenced by the apparent area of contact between the two surfaces. Also both adhesive and abrasive wear occurred depending on the sliding condition. Finally, undulations on the silicon wafer were found to be effective in trapping wear particles and resulted in the reduction of friction.