• Title/Summary/Keyword: Silicon thin

Search Result 1,697, Processing Time 0.027 seconds

Chemical Sensors Based on Distributed Bragg Reflector Porous Silicon Smart Particles

  • Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.8 no.1
    • /
    • pp.67-74
    • /
    • 2015
  • Sensing characteristics for porous smart particle based on DBR smart particles were reported. Optically encoded porous silicon smart particles were successfully fabricated from the free-standing porous silicon thin films using ultrasono-method. DBR PSi was prepared by an electrochemical etch of heavily doped $p^{++}$-type silicon wafer. DBR PSi was prepared by using a periodic pseudo-square wave current. The surface-modified DBR PSi was prepared by either thermal oxidation or thermal hydrosilylation. Free-standing DBR PSi films were generated by lift-off from the silicon wafer substrate using an electropolishing current. Free-standing DBR PSi films were ultrasonicated to create DBR-structured porous smart particles. Three different surface-modified DBR smart particles have been prepared and used for sensing volatile organic vapors. For different types of surface-modified DBR smart particles, the shift of reflectivity mainly depends on the vapor pressure of analyte even though the surfaces of DBR smart particles are different. However huge difference in the shift of reflectivity depending on the different types of surface-modified DBR smart particles was obtained when the vapor pressures are quite similar which demonstrate a possible sensing application to specify the volatile organic vapors.

Fabrication of Flexible Passive Matrix by Using Silicon Nano-ribbon (실리콘 나노리본을 이용한 유연한 패시브 매트릭스 소자 제작)

  • Shin, Gun-Chul;Ha, Jeong-Sook
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.338-341
    • /
    • 2011
  • Thin silicon ribbon was used for fabricating flexible silicon p-i-n junction devices, consisting of 100${\times}$100 arrays of pixels in 1 inch on the diagonal. Those passive matrix devices exhibited the rectification ratio $>10^{4}$ owing to smaller cross-talking current than that of p-n junction devices. P-i-n devices fabricated on silica/silicon substrates are easily detached by treatment with hydrofluoric acid and are subsequently transferred onto both PDMS and flexible PET film.

Preparation and Application of Silicon alkoxide (실리콘알콕사이드의 합성기술과 응용)

  • Rho, Jae-Seong;Yang, Hyun-Soo;Cho, Heon-Young;Cho, Tae-Woong
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.240-253
    • /
    • 1993
  • Silicon alkoxides are used as a raw materials of silica fibers, coating films and fine ceramics. Specially, the alkoxides have been confirmed the best raw material for VLSI thin film of computors in recent years. Because, the impotance of silicon alkoxides are increasing more and more now a days. And so, in thls report the synthetic methods, reaction mechanism, application fields of silicon alkoxides are summerized. Also, the results of our research and technical problems of silicon alkoxide preparation are introduced briefly.

  • PDF

Behavior of Solid Phase Crystallization of Amorphous Silicon Films at High Temperatures according to Raman Spectroscopy (라만 분석을 통한 비정질 실리콘 박막의 고온 고상 결정화 거동)

  • Hong, Won-Eui;Ro, Jae-Sang
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.1
    • /
    • pp.7-11
    • /
    • 2010
  • Solid phase crystallization (SPC) is a simple method in producing a polycrystalline phase by annealing amorphous silicon (a-Si) in a furnace environment. Main motivation of the crystallization technique is to fabricate low temperature polycrystalline silicon thin film transistors (LTPS-TFTs) on a thermally susceptible glass substrate. Studies on SPC have been naturally focused to the low temperature regime. Recently, fabrication of polycrystalline silicon (poly-Si) TFT circuits from a high temperature polycrystalline silicon process on steel foil substrates was reported. Solid phase crystallization of a-Si films proceeds by nucleation and growth. After nucleation polycrystalline phase is propagated via twin mediated growth mechanism. Elliptically shaped grains, therefore, contain intra-granular defects such as micro-twins. Both the intra-granular and the inter-granular defects reflect the crystallinity of SPC poly-Si. Crystallinity and SPC kinetics of high temperatures were compared to those of low temperatures using Raman analysis newly proposed in this study.

High-Density Hollow Cathode Plasma Etching for Field Emission Display Applications

  • Lee, Joon-Hoi;Lee, Wook-Jae;Choi, Man-Sub;Yi, Joon-Sin
    • Journal of Information Display
    • /
    • v.2 no.4
    • /
    • pp.1-7
    • /
    • 2001
  • This paper investigates the characteristics of a newly developed high density hollow cathode plasma(HCP) system and its application for the etching of silicon wafers. We used $SF_6$ and $O_2$ gases in the HCP dry etch process. This paper demonstrates very high plasma density of $2{\times}10^{12}cm^{-3}$ at a discharge current of 20 rna, Silicon etch rate of 1.3 ${\mu}m$/min was achieved with $SF_6/O_2$ plasma conditions of total gas pressure of 50 mTorr, gas flow rate of 40 seem, and RF power of200W. This paper presents surface etching characteristics on a crystalline silicon wafer and large area cast type multicrystlline silicon wafer. We obtained field emitter tips size of less than 0.1 ${\mu}m$ without any photomask step as well as with a conventional photolithography. Our experimental results can be applied to various display systems such as thin film growth and etching for TFT-LCDs, emitter tip formations for FEDs, and bright plasma discharge for PDP applications. In this research, we studied silicon etching properties by using the hollow cathode plasma system.

  • PDF

Analysis of Properties and Fabrication of $1000{\AA}$ silicon nitride MIM capacitor with High Breakdown Electric Field for InGaP/GaAs HBT Application (InGaP/GaAs HBT 적용을 위한 높은 절연강토의$1000{\AA}$ 실리콘 질화막 MIM capacitor제작과 특성 분석)

  • So, Soon-Jin;Oh, Doo-Suk;Sung, Ho-Kun;Song, Min-Jong;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.693-696
    • /
    • 2004
  • For InGaP/GaAs HBT applications, we have developed characterized MIM capacitors with thin $1000{\AA}$ PECVD silicon nitride which were deposited with $SiH_4/NH_3$ gas mixing rate, working pressure, and RF power of PECVD at $300^{\circ}C$ and had the capacitance density of 600 pF/$mm^2$ with the breakdown electric fields of 3073 MV/cm. Three PECVD process parameters were designed to lower the refractive index and then lower the deposition rate of silicon nitride films for the high breakdown electric field. At the PECVD process condition of gas mixing rate (0.92), working pressure (1.3 Torr), RF power (53 W), the AFM Rms value of about $1000{\AA}$ silicon nitride on the bottom metal was the lowest of 0.662 nmand breakdown electric fields were the highest of about 73 MV/cm.

  • PDF

Characterization of Thin Film Materials by Nanoindentation and Scanning Probe Microscopy (나노인덴테이션과 주사탐침현미경을 이용한 박막 재료의 특성평가)

  • Kim, Bong-seob;Yun, Jon-do;Kim, Jong-kuk
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.606-612
    • /
    • 2003
  • Surface and mechanical properties of thin films with submicron thickness was characterized by nanoindentation with Berkovich and Vickers tips, and scanning probe microscopy. Nanoindention was made in a depth range of 15 to 200 nm from the surface by applying tiny force in a range from 150 to $9,000 \mu$N. Stiffness, contact area, hardness, and elastic modulus were determined from the force-displacement curve obtained. Reliability was first tested by using fused quartz, a standard sample. Elastic modulus and hardness values of fused quartz measured were the same as those reported in the literature within two percent of error. Mechanical properties of ITO thin film were characterized in a depth range of 15∼200nm. As indentation depth increased, elastic modulus and hardness decreased by substrate effect. Ion beam deposited DLC thin films were indented in a depth range of 40∼50 nm. The results showed that the DLC thin film using benzene and bias voltage 0∼-50 V has elastic modulus and hardness value of 132 and 18 GPa respectively. Pure DLC thin films showed roughnesses lower than 0.25 nm, but silicon-added DLC thin films showed much higher roughness values, and the wavy surface morphology.

A Study on the Change of Si Thin Film Characteristics to Find Design Rules for Sputtering Equipment (스퍼터 장비의 설계 룰을 찾기 위한 Si박막 특성 변화 연구)

  • Kim, Bo-Young;Kang, Seo Ik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.100-105
    • /
    • 2020
  • Recently, as display and semiconductor devices have been miniaturized and highly integrated, there is a demand for optimization of the structural characteristics of the thin film accordingly. The sputtering device has the advantage of stably obtaining a desired thin film depending on the material selected for the target. However, due to the structural characteristics of the sputtering equipment, the structural characteristics of the film may be different depending on the incidence angle of the sputtering target material to the substrate. In this study, the characteristics of the thin film material according to the scattering angle of the target material and the incidence position of the substrate were studied to find the optimization design rule of the sputtering equipment. To this end, a Si thin film of 1 ㎛ or less was deposited on the Si(100) substrate, and then the microstructure, reflectance, surface roughness, and thin film crystallinity of the thin film formed for each substrate location were investigated. As a result of the study, it was found that as the sputter scattering angle increased and the substrate incident angle decreased, the gap energy along with the surface structure of the thin film increased from 1.47 eV to 1.63 eV, gradually changing to a non-conductive tendency.

Fabrication and Characterization of Zinc-Tin-Oxide Thin Film Transistors Prepared through RF-Sputtering

  • Do, Woori;Choi, Jeong-Wan;Ko, Myeong-Hee;Kim, Eui-Hyeon;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.207.2-207.2
    • /
    • 2013
  • Oxide-based thin film transistors have been attempted as powerful candidates for driving circuits for active-matrix organic light-emitting diodes and transparent electronics. The oxide TFTs are based on the amorphous multi-component oxides involving zinc, indium, and/or tin elements as main cation sources. The current work employed RF sputtering in order to deposit zinc-tin oxide thin films applicable to transparent oxide thin film transistors. The deposited thin film was characterized and probed in terms of materials and devices. The physical/chemical characterizations were performed using X-ray diffraction, Atomic Force Microscopy, Spectroscopic Ellipsometry, and X-ray Photoelectron Spectroscopy. The thin film transistors were fabricated using a bottom-gated structure where thermally-grown silicon oxide layers were applied as gate-dielectric materials. The inherent properties of oxide thin films are combined with the corresponding device performances with the aim to fabricating the multi-component oxide thin films being optimized towards transparent electronics.

  • PDF

Surface and Physical Properties of Polymer Insulator Coated with Diamond-Like Carbon Thin Film (DLC 박막이 코팅된 폴리머 애자의 표면 및 물리적 특성)

  • Kim, Young Gon;Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.16-20
    • /
    • 2021
  • In this study, we tried finding new materials to improve the stain resistance properties of polymer insulating materials. Using the filtered vacuum arc source (FVAS) with a graphite target source, DLC thin films were deposited on silicon and polymer insulator substrates depending on their thickness to confirm the surface properties, physical properties, and structural properties of the thin films. Subsequently, the possibility of using a DLC thin film as a protective coating material for polymer insulators was confirmed. DLC thin films manufactured in accordance with the thickness of various thin films exhibited a very smooth and uniform surface. As the thin film thickness increased, the surface roughness value decreased and the contact angle value increased. In addition, the elastic modulus and hardness of the DLC thin film slightly increased, and the maximum values of elastic modulus and hardness were 214.5 GPa and 19.8 GPa, respectively. In addition, the DLC thin film showed a very low leakage current value, thereby exhibiting electrical insulation properties.