• Title/Summary/Keyword: Silicon tetrachloride

Search Result 14, Processing Time 0.019 seconds

A Numerical Study on the Mitigation Effect of Water Curtain for SiCl4 Toxic Gas Release (SiCl4 누출 시 수막설비의 방재효과에 대한 수치 해석 연구)

  • Tae In Ryu;Eunmi Lee;Seungha Kim;Seong-mi Kang;Chang-hyun Shin;Seungbum Jo
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.3
    • /
    • pp.43-50
    • /
    • 2023
  • Silicone tetrachloride (SiCl4) leak accidents cause enormous human and environmental damage because it is highly toxic. Some handling facilities use water curtains to reduce the impact range of SiCl4. Although the water curtain is known as one of the most efficient technologies for post-release mitigation, its effect on reducing SiCl4 concentration needs to be investigated scientifically and quantitatively. In this study, three-dimensional computational fluid dynamics (CFD) was used to investigate the physical and chemical effects of water curtains as a release-mitigation system for SiCl4. SiCl4 is released and dispersed five seconds prior to the operation of the water curtain. Once the water curtain works, the SiCl4 reacts chemically with the water and its concentration decreases rapidly; it reaches an emergency response planning guidelines level 2 (ERPG-2) of 5 parts per million (ppm) at about 570 m. We observed, however, that the physical effect of water curtains on reducing SiCl4 concentration is insignificant when the chemical effect is eliminated. These results are crucial since they can be a scientific and quantitative basis for the 'technical guidelines for estimating the accident affected range'. In order to protect the public from chemical accidents, more toxic gas mitigation technologies need to be developed.

The characteristics of silicon nitride thin films prepared by atomic layer deposition with batch type reactor (Batch-Type 원자층 증착 방법으로 형성한 실리콘 질화막의 특성)

  • Kim, Hyuk;Lee, Ju-Hyun;Han, Chang-Hee;Kim, Woon-Joong;Lee, Yeon-Seung;Lee, Won-Jun;Na, Sa-Kyun
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.4
    • /
    • pp.263-268
    • /
    • 2003
  • Precise thickness control and excellent properties of silicon nitride thin films are essential for the next-generation semiconductor and display devices. In this study, silicon nitride thin films were deposited by batch-type atomic layer deposition (ALD) method using $SiC1_4$ and $NH_3$ as the precursors at temperatures ranging from 500 to $600^{\circ}C$. Thin film deposition using a batch-type ALD reactor was a layer-by-layer atomic growth by self-limiting surface reactions, and the thickness of the deposited film can be controlled by the number of deposition cycles. The silicon nitride thin films deposited by ALD method exhibited composition, refractive index and wet etch rate similar with those of the thin films deposited by low-pressure chemical vapor deposition method at $760^{\circ}C$. The addition of pyridine mixed with precursors increased deposition rate by 50%, however, the films deposited with pyridine was readily oxidized owing to its unstable structure, which is unsuitable for the application to semiconductor or display devices.

Preparation of Silicon Tetrachloride by Chlorination of Silicon (실리콘의 염소화반응에 의한 사염화규소 제조)

  • Park, Kyun Young;Lee, Mi Sun;Kim, Min Cheol;Lee, Chan Hee;Park, Hoey Kyung;Kang, Tae Won;Jeong, Hae Seong;Han, Kyoung Ah;Huh, Weon Hoe;You, Ji Cheol
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.407-410
    • /
    • 2013
  • The chlorination of a metallurgical-grade silicon was carried out in a fluidized bed reactor, 25 mm in diameter. The flow rate of the chlorine admitted into the reactor was 0.2 L/min and that of the carrier nitrogen was 0.8~1.0 L/min. The reactor temperature was maintained at $450^{\circ}C$ and the temperature of the coolant at the $SiCl_4$ condenser was at $-5^{\circ}C$. The $SiCl_4$ yield increased with increasing the mole fraction of chlorine in the feed gas, exhibiting 28% at the mole fraction of 0.2. Further increase of the chlorine mole fraction was not attempted in a worry that the reactor might be failed due to the high exothermicity of the reaction. The production of $SiCl_4$ from silicon by fluidized bed chlorination was demonstrated on a laboratory scale, which is a stepping stone for future studies under more severe conditions toward industrial application.

A Study on the Characteristics of Chemical Accidents and Reduction of Accidents in Jeollabuk-do (전라북도 내 화학사고 특성분석과 사고 발생 저감을 위한 연구)

  • Jeong, Jae-Uk;Park, Chong-Eun
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.49-53
    • /
    • 2020
  • This study aimed to identify the characteristics of 40 chemical accidents that occurred in Jeollabuk-do from 2004 to 2019. During this time, there were 2.5 accidents per year on average in the province; their types were classified as spill/leak, fire, explosion, adverse reaction, and complex. There were 34 leaks and six explosions, and they are categorized as follows: 12 by worker error, 16 from facility defects, and 12 by transport vehicle accidents. The substances involved in these accidents were ammonia (15%), sulfuric acid (12.5%), and silicon tetrachloride (7.5%). Notably, the rate of chemical accidents (75%) is the highest during spring and summer. In order to reduce chemical accidents, first, there should be compliance with the relevant laws. Second, the quality of safety education and training of workers should be improved. Finally, valuable government support is also necessary to improve facilities.