• Title/Summary/Keyword: Silicon substrate

Search Result 1,271, Processing Time 0.023 seconds

Characteristics of Low Dielectric Constant SiOF Thin Films with Post Plasma Treatment Time (플라즈마 후처리 시간에 따른 저유전율 SiOF 박막의 특성)

  • Lee, Seok Hyeong;Park, Jong Wan
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.267-267
    • /
    • 1998
  • The fluorine doped silicon oxide (SiOF) intermetal dielectric (IMD) films have been of interest due to their lower dielectric constant and compatibility with existing process tools. However instability issues related to bond and increasing dielectric constant to water absorption when the SiOF films was exposured to atmospheric ambient. Therefore, the purpose of this research is to study the effect of post oxygen plasma treatment on the resistance of moisture absorption and reliability of SiOF film. Improvement of moisture absorption resistance of SiOF film is due to the forming of thin SiO₂layer at the SiOF film surface. It is thought that the main effect of the improvement of moisture absorption resistance was densification of the top layer and reduction in the number of Si-F bonds that tend to associate with OH bonds. However, the dielectric constant was increased when plasma treatment time is above 5 min. In this study, therefore, it is thought that the proper plasma treatment time is 3 min when plasma treatment condition is 700 W of microwave power, 3 mTorr of process pressure and 300℃ of substrate temperature.

Effect of Gas Phase Cycling Modulation of C2H2/SF6 Flows on the Formation of Carbon Coils (탄소 코일 생성에 대한 C2H2/SF6 기체유량의 싸이클릭 변조 효과)

  • Lee, Seok-Hee;Kim, Sung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.178-184
    • /
    • 2012
  • Carbon coils could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and $H_2$ as source gases and $SF_6$ as an additive gas under thermal chemical vapor deposition system. The characteristics (formation density and morphology) of as-grown carbon coils were investigated as functions of additive gas flow rate and the cycling on/off modulation of $C_2H_2/SF_6$ flows. Even in the lowest $SF_6$ flow rate (5 sccm) in this work, the cycling on/off modulation injection of $SF_6$ flow for 2 minutes could give rise to the formation of nanosized carbon coils, whereas the continuous injection of $SF_6$ flow for 5 minutes could not give rise to the carbon coils formation. With increasing $SF_6$ flow rates from 5 to 30 sccm, the cycling on/off modulation injection of $SF_6$ flow confines the geometry for the carbon coils to the nanosized ones. Fluorine's role of $SF_6$ during the reaction was regarded as the main cause for the confinement of carbon coils geometries to the nano-sized ones.

SiOC Coating on Stainless Steel Using Polyphenylcarbosilane, and Its Anti-corrosion Properties (폴리페닐카보실란을 이용한 SiOC가 코팅된 스테인리스스틸 제조 및 이의 내부식성 특징)

  • Kim, Jong-Il;Lee, Yoon-Joo;Kim, Soo-Ryong;Kim, Young-Hee;Kim, Jung-Il;Woo, Chang-Hyn;Choi, Doo-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • To improve the chemical stability of metal, the ceramic coatings on metallic materials have attracted interest from many researchers due to the chemical inertness of ceramic materials. To endure strong acids, SiOC coating on metal substrate was carried out by dip coating method using 20wt% polyphenylcarbosilane solution; SiC powder was added to the solution at 10wt% and 15wt% to improve the mechanical properties and to prevent cracks of the film. Thermal oxidation as a curing step was carried out at $200^{\circ}C$ for crosslinking of the polyphenylcarbosilane, and the coating samples were pyrolysized at $800^{\circ}C$ under argon to convert the polyphenylcarbosilane to SiOC film. The thicknesses of the SiOC coating films were $2.36{\mu}m$ and $3.16{\mu}m$. The quantities of each element were measured as $SiO_{1.07}C_{6.33}$ by EPMA, and it can be confirmed that the SiOC film from polyphenylcarbosilane was formed in a manner that was carbon rich. The hardness of the SiOC film was found to be 3.2Gpa through nanoindentor measurement. No defect including cracks appeared in the SiOC film. The weight loss of the SiOC coated stainless steel was within 2% after soaking in 10% HCl solution at $80^{\circ}C$ for one week. From these results, SiOC coating shows good potential for application to protect against severe chemical corrosion of stainless steel.

Effect of Reaction Temperature on the Geometry of Carbon Coils Formed by SF6 Flow Incorporation in C2H2 and H2 Source Gases (SF6-C2H2-H2 기체에 의해 생성된 탄소 코일 기하구조의 반응온도 효과)

  • Kim, Sung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.48-54
    • /
    • 2012
  • Carbon coils could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and $H_2$ as source gases and SF6 as an additive gas under thermal chemical vapor deposition system. The geometries of as-grown carbon materials were investigated with increasing the reaction temperature as the increment of $25^{\circ}C$ from $650^{\circ}C$ up to $800^{\circ}C$. At $650^{\circ}C$, the embryos for carbon coils were formed. With increasing the reaction temperature to $700^{\circ}C$, the coil-type geometries were developed. Further increasing the reaction temperature to $775^{\circ}C$, the development of wave-like nano-sized coils, instead of nano-sized coils, and occasional appearance of micro-sized carbon coils could be observed. Fluorine in $SF_6$ additive may shrink the micro-sized coil diameter via the reduction of Ni catalyst size by fluorine's etching role. Finally, the preparation of the micro-sized carbon coils having the smaller coil diameters, compared with the previously reported ones, could be possible using $SF_6$ additive.

Formation of Passivation Layer and Its Effect on the Defect Generation during Trench Etching (트렌티 식각시 식각 방지막의 형성과 이들이 결함 생성에 미치는 영향)

  • Lee, Ju-Wook;Kim, Sang-Gi;Kim, Jong-Dae;Koo, Jin-Gon;Lee, Jeong-Yong;Nam, Kee-Soo
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.634-640
    • /
    • 1998
  • A well- shaped trench was investigated in view of the defect distribution along trench sidewall and bottom using high resolution transmission electron microscopy. The trench was formed by HBr plasma and additive gases in magnetically enhanced reactive ion etching system. Adding $0_2$ and other additive gases into HBr plasma makes it possible to eliminate sidewall undercut and lower surface roughness by forming the passivation layer of lateral etching, resulted in the well filled trench with oxide and polysilicon by subsequent deposition. The passivation layer of lateral etching was mainly composed of $SiO_xF_y$ $SiO_xBr_y$ confirmed by chemical analysis. It also affects the generation and distribution of lattice defects. Most of etch induced defects were found in the edge region of the trench bottom within the depth of 10$\AA$. They are generally decreased with the thickness of residue layer and almost disappeared below the uni¬formly thick residue layer. While the formation of crystalline defects in silicon substrate mainly depends on the incident angle and energy of etch species, the region of surface defects on the thickness of residue layer formed during trench etching.

  • PDF

Growth characteristics of titanium boride($\textrn{TiB}_{x}$) thin films deposited by dual-electron-beam evaporation (2원전자빔 증착법에 의한 티타늄붕화물($\textrn{TiB}_{x}$) 박막의 성장특성)

  • 이영기;이민상;임철민;김동건;진영철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.1
    • /
    • pp.20-26
    • /
    • 2001
  • Titanium boride ($\textrn{TiB}_{x}$) films were deposited on (100) silicon substrates at the substrate temperature of $500^{\circ}C$ by means of the co-evaporation of titanium and boron evaporants during deposition. The co-evaporation method makes it possible to deposit the non-stoichiometric films with different boron-to-titanium ratio($0{\le}B/Ti \le 2.5$). The resistivity increases linearly as the boron-to-titanium ratio in the as-deposited films is increased. The surface roughness of $\textrn{TiB}_{x}$ films is changed as a function of the boron-to-titanium ratio. The XRD spectrum for pure titanium film shows a highly (002) preferred orientation. For B/Ti=0.59 ratio only a single TiB phase that shows a (111) preferred orientation is observed. However, the $\textrn{TiB}_{x}$ phase with the hexagonal structure of the $AlB_2$(C32) type appears as the boron concentration increase, and only a single $\textrn{TiB}_{x}$ phase is observed for $B/Ti \ge 2.0$ ratio. The $\textrn{TiB}_{x}$/Si samples reveal a tensile stress (3~$20{\times}^9$dyn/$\textrm{cm}^2$) in the overall composition of the films, although the magnitude of the residual stresses is depended on the nominal B/Ti ratio.

  • PDF

Residual Stress and Elastic Modulus of Y2O3 Coating Deposited by EB-PVD and its Effects on Surface Crack Formation

  • Kim, Dae-Min;Han, Yoon-Soo;Kim, Seongwon;Oh, Yoon-Suk;Lim, Dae-Soon;Kim, Hyung-Tae;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.410-416
    • /
    • 2015
  • Recently, a new $Y_2O_3$ coating deposited using the EB-PVD method has been developed for erosion resistant applications in fluorocarbon plasma environments. In this study, surface crack formation in the $Y_2O_3$ coating has been analyzed in terms of residual stress and elastic modulus. The coating, deposited on silicon substrate at temperatures higher than $600^{\circ}C$, showed itself to be sound, without surface cracks. When the residual stress of the coating was measured using the Stoney formula, it was found to be considerably lower than the value calculated using the elastic modulus and thermal expansion coefficient of bulk $Y_2O_3$. In addition, amorphous $SiO_2$ and crystalline $Al_2O_3$ coatings were similarly prepared and their residual stresses were compared to the calculated values. From nano-indentation measurement, the elastic modulus of the $Y_2O_3$ coating in the direction parallel to the coating surface was found to be lower than that in the normal direction. The lower modulus in the parallel direction was confirmed independently using the load-deflection curves of a micro-cantilever made of $Y_2O_3$ coating and from the average residual stress-temperature curve of the coated sample. The elastic modulus in these experiments was around 33 ~ 35 GPa, which is much lower than that of a sintered bulk sample. Thus, this low elastic modulus, which may come from the columnar feather-like structure of the coating, contributed to decreasing the average residual tensile stress. Finally, in terms of toughness and thermal cycling stability, the implications of the lowered elastic modulus are discussed.

Fabrication of Si Nano Dots by Using Diblock Copolymer Thin Film (블록 공중합체 박막을 이용한 실리콘 나노점의 형성)

  • Kang, Gil-Bum;Kim, Seong-Il;Kim, Young-Hwan;Park, Min-Chul;Kim, Yong-Tae;Lee, Chang-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.2 s.43
    • /
    • pp.17-21
    • /
    • 2007
  • Dense and periodic arrays of holes and Si nano dots were fabricated on silicon substrate. The nanopatterned holes were approximately $15{\sim}40nm$ wide, 40 nm deep and $40{\sim}80\;nm$ apart. To obtain nano-size patterns, self?assembling diblock copolymer were used to produce layer of hexagonaly ordered parallel cylinders of polymethylmethacrylate (PMMA) in polystyrene(PS) matrix. The PMMA cylinders were degraded and removed with acetic acid rinse to produce a PS. $100\;{\AA}-thick$ Au thin film was deposited by using e-beam evaporator. PS template was removed by lift-off process. Arrays of Au nano dots were transferred by using Fluorine-based reactive ion etching(RE). Au nano dots were removed by sulfuric acid. Si nano dots size and height were $30{\sim}70\;nm$ and $10{\sim}20\;nm$ respectively.

  • PDF

Deposition and Characteristics of TiN Thin Films by Atomic Layer Epitaxy (ALE 법에 의한 TiN 박막의 증착 및 특성)

  • Kim, Dong-Jin;Jung, Young-Bae;Lee, Myung-Bok;Lee, Jung-Hee;Lee, Yong-Hyun;Hahm, Sung-Ho;Lee, Jong-Hwa
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.6
    • /
    • pp.43-49
    • /
    • 2000
  • The TiN thin films were deposited by ALE(atomic layer epitaxy) on (100) silicon substrate. The TiN thin films were characterized by means of XRD, 4-point probe, AFM, AES and SEM. TEMAT(terakis(ethyl methy lamino)titanium) and $NH_3$ were injected into the reactor in sequence of TEMAT-$N_2-NH_3-N_2$ to ensure a saturated surface reaction. As a result, the depostion rate of the TiN film was controlled by self-limiting growth mechanism at temperature range form 150 to 220 $^{\circ}C$. Deposited TiN films, all of which show amorphous structure, had a fixed deposition rate of 4.5 ${\AA}$/cycle. The resistivity of 210 ~ 230 ${\mu}{\Omega}{\cdot}$cm and the surface r.m.s. roughness of 7.9 ~ 9.3 ${\AA}$ were measured. When TiN film of 2000 ${\AA}$ were deposited, a excellent step coverage were observed in a trench structure of 0.43${\mu}m$ contacts with 6:1 aspect ratio.

  • PDF

BS/channeling studies on the heteroepitaxially grown $Y_2O_3$ films on Si substrates by UHV-ICB deposition (실리콘 기판 위에 UHV-ICB 증착법으로 적층 성장된 $Y_2O_3$박막의 BS/channeling 연구)

  • 김효배;조만호;황보상우;최성창;최원국;오정아;송종한;황정남
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.235-241
    • /
    • 1997
  • The crystallinity and the structure of heteroepitaxially grown $Y_2O_3$ films on the silicon substrates deposited by Ultra High Vacuum Ionized Cluster Beam(UHV-ICB) were investigated by Back-scattering Spectroscopy(BS)/channeling. The channeling minimum values, $X_{min}$, of the $Y_2O_3$ films deposited by other methods were 0.8~0.95 up to the present, which indicates amorphous or highly polycrystalline nature of the $Y_2O_3$ films. On the contrary, the channeling minimum value of heteroepitaxially grown $Y_2O_3$ films on Si(100) and Si(111) deposited by UHV-ICB are 0.28 and 0.25 respectively. These results point out fairly good crystalline quality. It is also observed that the top region of $Y_2O_3$ films have less crystalline defects than the bottom region regardless of the crystal direction of the Si substrates. The axis of $Y_2O_3$<111> epitaxially grown on Si(111) is tilt by $0.1^{\circ}$ with respect to Si<111>. That of $Y_2O_3$<110> on Si(100) is parallel to the Si<001>. The $Y_2O_3$ film on Si(100) grew with single domain structure and that on Si(111) grew with double domain structure. From the result of oxygen resonance BS/channeling, the oxygen atoms in heteroepitaxially grown $Y_2O_3$ film on Si(111) substrate have the crystallinity, but that on Si(100) shows almost channeling amorphous state.

  • PDF