• Title/Summary/Keyword: Silicon rubber

Search Result 119, Processing Time 0.044 seconds

Electrostatic Electrification Properties due to Square of Silicone Rubber (실리콘 고무의 면적 변화에 따른 정전기 대전 특성)

  • Lee, Sung-Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.9
    • /
    • pp.732-737
    • /
    • 2012
  • This study made a specimen (contact surface size: $45\;mm{\times}0.02\;mm{\times}45{\sim}55\;mm$) with silicon rubber for low voltage cable with 50 phr silica filler. The electrification voltage of electrostatics were measured for different sizes of contact surface with the applied voltage of 10kV and the environmental settings of temperature ($25{\sim}40^{\circ}C$) and humidity (40~80%). The following conclusions were made. The electrification voltage of electrostatics decreased as the humidity increased. The electrification voltage of electrostatics increased as the temperature increased. The larger the surface size, the higher the electrification voltage of electrostatics. The property of the material had more effect on the relaxation time than the humidity.

Speed reducer be indicated a power using of elastic strain (탄성 변형을 이용한 동력이 표시되는 감속기)

  • Noh, S.Y.;Nam, W.K.;Kang, H.K.;Kim, N.I.;Kim, Y.T.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.181-186
    • /
    • 2006
  • In this paper, a noncontact type torque meter using silicone rubber to measure the exact torque value and reduce a vibration and a noise, was developed. When planetary gear speed reducer runs, torque, RPM etc.. of motor change according to load or speed change. So, it needs a device to detect load's change or to diagnose the state of thewhole drive department by monitoring these result values. The noncontact type torque meter using silicone rubber that we're trying to develop this time is low-cost and can measure RPM and torque value simply. Also, it caculate a power using this value and indicate them on screen.

  • PDF

Development of Rapid Tooling using Investment Casting & R/P Master Model (R/P 마스터 모델을 활용한 정밀주조 부품 및 쾌속금형 제작 공정기술의 개발)

  • Jeong, Hae-Do;Kim, Hwa-Young
    • Journal of Korea Foundry Society
    • /
    • v.20 no.5
    • /
    • pp.330-335
    • /
    • 2000
  • Functional metal prototypes are often required in numerous industrial applications. These components are typically needed in the early stage of a project to determine form, fit and function. Recent R/P(Rapid Prototyping) part are made of soft materials such as plastics, wax, paper, these master models cannot be employed durable test in real harsh working environment. Parts by direct metal rapid tooling method, such as laser sintering, by now are hard to get net shape, pores of the green parts of powder casting method must be infiltrated to get proper strength as tool, and new type of 3D direct tooling system combining fabrication welding arc and cutting process is reported. But a system which can build directly 3D parts of high performance functional material as metal park would get long period of system development, massive investment and other serious obstacles, such as patent. In this paper, through the rapid tooling process as silicon rubber molding using R/P master model, and fabricate wax pattern in that silicon rubber mold using vacuum casting method, then we translated the wax patterns to numerous metal tool prototypes by new investment casting process combined conventional investment casting with rapid prototyping & rapid tooling process. With this wax-injection-mold-free investment casting, we developed new investment casting process of fabricating numerous functional metal prototypes from one master model, combined 3-D CAD, R/P and conventional investment casting and tried to expect net shape measuring total dimension shrinkage from R/P pare to metal part.

  • PDF

Investigation of tracking resistance of engineering plastic and engineering plastic coated silicon rubber (엔지니어링 플라스틱과 실리콘 고무가 코팅된 엔지니어링 플라스틱의 내트래킹성 검토)

  • Heo, Jun;Jung, Eui-Hwan;Lim, Jong-Nam;Lim, Kee-Joe;Kang, Seong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1449_1450
    • /
    • 2009
  • Surface contamination and leakage current have caused operating problems. A flashover in a substation may result in destruction of an insulator or many others electrical equipment. Engineering plastics have good characteristic (light weight, good productivity and little of void) as compare with epoxy or porcelain insulators. Outdoor insulator must have resistance to contamination. However, they are not suited to outdoor insulator by reason of being not good hydrophobic. RTV has a good property of hydrophobic and ATH has characteristic obstructing exothermic reaction. In order to reduce the incidence of insulator flashover and damage, the silicon rubber contained nano size ATH coat on surface of engineering plastics. In this paper, it compares resistance tracking of the engineering plastic coated RTV with that of non-coated engineering plastic and ATH filled composites performed much better than non-filled composites.

  • PDF

An Experimental Study on the Evaluation of Fastening Unit Insulation Developed for the Insulation of Curtain Wall

  • Kim, Bong-Joo;Kim, Kyeong-A
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.243-256
    • /
    • 2012
  • This study is the experimental study to improve the insulation of the fastening unit system, which has the most vulnerable insulation in the curtain walls. The Fastening Units were designed and fabricated to minimize the connection part of mullions. In addition, slight movements were taken into account and the performance of the middle layer was evaluated by forming an insulation layer with the vibration-proof rubber and the silicon to satisfy the mechanical and thermal performance criteria. A total of 10 experiments were performed under various conditions, such as indoor-outdoor temperature difference, type of insulation material, thickness of insulation material, and others. using the fabricated Fastening Units. As a result, the vibration-proof rubber insulation showed the temperature difference of $2.2^{\circ}C-5.0^{\circ}C$, and the silicon insulation showed the temperature difference of $2.8^{\circ}C-4.5^{\circ}C$, compared to the non-insulated Fasteniirature difference, typesng Units. When these results were compared with the psychometric chart graph, the insulated Fastening Unit designed in this study can be considered to prevent the dew condensation.

A Study on the Properties of Flame Retardant and Fire Safety of Silicone Rubbers Added Reinforcing Fillers (보강성 충진제를 첨가한 실리콘 고무의 난연 및 화재안전 특성에 관한 연구)

  • Park, Seung Ho;Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.349-355
    • /
    • 2019
  • A fire, be it caused intentionally or unintentionally, leads to economic loss and physical damage, and requires digestion. The number of fires is increasing yearly, and electrical fires account for more than 30% among the main causes of fires. Electric wires that catch fire typically employ silicone coatings; silicone has organic as well as inorganic properties. Silicon is a natural, nonexistent, synthetic product with numerous applications. In this study, a silicon rubber for application in wires was prepared by high-temperature vulcanization (HTV) with a Shore A hardness of 70. We report results for the flame retardancy test and the fire safety characteristics via inorganic analysis. For this, a quartz inorganic material was added to the wire specimen, and 18% powdered extinguishing agent ammonium phosphate and expanded vermiculite respectively. Thus, expanded vermiculite showed the best flame retardancy and fire safety characteristics.

A Study on Plasma Display Panel Barrier Rib Fabrication by Silicone Rubber Tooling and electromagnetic Wave (실리콘고무형과 전자기파에 의한 PDP격벽의 성형에 관한 연구)

  • 정해도;손재혁;조인호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.20-23
    • /
    • 2001
  • Plasma Display Panel(PDP) is a type of flat panel display utilizing the light emission produced by gas discharge. Barrier Ribs of PDP separating each sub-pixel prevents optical and electrical crosstalks from adjacent sub-pixels. The mold for forming the barrier ribs has been newly researched to overcome the disadvantages of conventional manufacturing processes such as screen printing, sand-blasting and photosensitive glass methods. The mold for PDP barrier ribs have stripes of micro grooves transferring glass-material wall. In this paper, Stripes of grooves of which width 48${\mu}{\textrm}{m}$, depth 124$\mu\textrm{m}$ , pitch 274$\mu\textrm{m}$ was acquired by machining of single crystal silicon with dicing saw blade. Maximum roughness of the bottom of the grooves was 59.6nm Ra in grooving Si. Barrier ribs were formed with silicone rubber mold, which is transferred from grooved Si forming hard mold. Silicone rubber mold has the elasticity, which enable to accommodate the waveness of lower glass plate of PDP. The methods assisted by the microwave and UV was adopted for reducing the forming time of glass paste.

  • PDF

A Study on the Physical and Chemical Properties of Teat Cup Liners (유두컵 라이너의 물리화학적 특성 조사)

  • Lee Jeong-chi;Park Hyoung-ryun;Kim Myeong-seon;Lee Chung-gil;Lee Chai-yong
    • Journal of Veterinary Clinics
    • /
    • v.22 no.2
    • /
    • pp.100-107
    • /
    • 2005
  • This study was carried out to investigate the physical and chemical properties of teat cup liners. The hardness of the liners was $50\~67$, and their fatigue to failure 38-1,185 cycles. The elongation and tensile strength of these liners were about $134 kgf/cm^2\;and\;473\%$, respectively. The infrared spectrum and the gas chromatogram revealed that the liner A was consisted of NR, SBR, and BR, with a composition ratio of 60:20:20 (part per hundred rubber). The raw rubber materials used for liners B to G, on the other hand, were NBR only. However, the liner H was made of silicon rubber. The thermogravimetric analysis showed that the liners tested in this study contained raw rubber material, carbon black, organic compounds and metallic compounds.

A Study of Improving Transmissibility for Grommets in Air conditioner Compressor (에어컨 압축기 진동전달률 개선을 위한 그로메트 연구)

  • Park, Hong-Ul;Lee, Jai-Kwon;Mo, Jin-Yong;Park, Deug-Yong;Han, Hyung-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.651-655
    • /
    • 2004
  • This paper studies the designing method and application for grommets, rubber material used to absorb vibration on the air conditioner compressor. The existing grommet with hardness 40 degrees, EPDM, has the high transmissibility on the compressor that causes additional structure born sound. The problem for EPDM is transformation over long time usage possibly due to its design in which stress is concentrated on a certain position. In order to resolve it, silicon material was previously used with the same design in some models. The vibration performance did improve, but the cost became high. Below are the major developments regarding improvements in compressor rubber material, vibration performance and durability through design change, and new grommet to attain cost reduction. 1 The optimum grommet design for stress even distribution through FEM methods. 2. Comparison for grommet material and design for improved transmissibility. 3. Assess for grommets durability and product applications.

  • PDF

Development of Radiation Shield with Environmentally-Friendly Materials ; Ⅰ: Comparison and Evaluation of Fiber, Rubber, Silicon in the Radiation Shielding Sheet (친환경 소재의 의료 방사선 차폐 시트 개발 ; I: 섬유, 고무, 실리콘 소재 차폐 시트의 성능 비교평가)

  • Kim, Seon-Chil;Park, Myeong-Hwan
    • Journal of radiological science and technology
    • /
    • v.33 no.2
    • /
    • pp.121-126
    • /
    • 2010
  • Traditionally, lead has been primarily used to shield the radiation in the hospital, because of its soft texture, durability and cost effectiveness. However, lead can be dangerous because of its toxicity when exposed to the human body, and it is classified as a heavy metal like cadmium, mercury, and arsenic etc. In order to compensate its noxious properties on the human body, researchers are trying to develop a radiation shield which has similar shielding efficiency and can also be manufactured in any form. In this study, sulfuric acid barium was mixed with fiber, rubber, and silicon all of which are harmless to the human body, tested, and evaluated for its ability of medical radiation shield. The result of this study showed that the sheet containing silicon and barium has the strongest shielding abilities.