• Title/Summary/Keyword: Silicon nanowires

Search Result 70, Processing Time 0.032 seconds

Growth Characteristics of Amorphous Silicon Oxide Nanowires Synthesized via Annealing of Ni/SiO2/Si Substrates

  • Cho, Kwon-Koo;Ha, Jong-Keun;Kim, Ki-Won;Ryu, Kwang-Sun;Kim, Hye-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4371-4376
    • /
    • 2011
  • In this work, we investigate the growth behavior of silicon oxide nanowires via a solid-liquid-solid process. Silicon oxide nanowires were synthesized at $1000^{\circ}C$ in an Ar and $H_2$ mixed gas. A pre-oxidized silicon wafer and a nickel film are used as the substrate and catalyst, respectively. We propose two distinctive growth modes for the silicon oxide nanowires that both act as a unique solid-liquid-solid growth process. We named the two growth mechanisms "grounded-growth" and "branched-growth" modes to characterize their unique solid-liquid-solid growth behavior. The two growth modes were classified by the generation site of the nanowires. The grounded-growth mode in which the grown nanowires are generated from the substrate and the branchedgrowth mode where the nanowires are grown from the side of the previously grown nanowires or at the metal catalyst drop attached at the tip of the nanowire stem.

Comparative Study of the Nanomechanics of Si Nanowires (실리콘 나노와이어의 나노역학 비교연구)

  • Lee, Byeong-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.733-738
    • /
    • 2009
  • Mechanical properties of <001> silicon nanowires are presented. In particular, predictions from the calculations based on different length scales, first principles calculations, atomistic calculations, and continuum nanomechanical theory, are compared for <001> silicon nanowires. There are several elements that determine the mechanics of silicon nanowires, and the complicated balance between these elements is studied. Specifically, the role of the increasing surface effects and reduced dimensionality predicted from theories of different length scales are compared. As a prototype, a Tersoff-based empirical potential has been used to study the mechanical properties of silicon nanowires including the Young's modulus. The results significantly deviates from the first principles predictions as the size of wire is decreased.

Synthetic Methods and Applications of Silicon Nanowire: A Review

  • Haque, Md Hasanul;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.10 no.2
    • /
    • pp.65-73
    • /
    • 2017
  • In this review paper, we will discuss about the methods of synthesizing Si nanowires by Top-down and Bottom-up. Silicon nanowires have a lot of application on various fields such as Li ion batteries, solar cells, chemical and biological sensors. We will address some of the applications of silicon Nanowires.

Self Growth of Silica Nanowires on a Si/SiO2 Substrate

  • Jeong, Hann-Ah;Seong, Han-Kyu;Choi, Heon-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.3
    • /
    • pp.142-145
    • /
    • 2008
  • The growth of amorphous silica nanowires by on-site feeding of silicon and oxygen is reported. The nanowires were grown on a nickel-coated oxidized silicon substrate without external silicon or oxygen sources. Transmission electron microscopy observation revealed that the nanowires, which have diameters of less than 50 nm and a length of several micrometers, were grown using a traditional vapor-liquid-solid mechanism. Blue photoluminescence was observed from these nanowires at room temperature. An approach to grow nanowires without external precursors may be useful when integrating nanowires into devices structures. This can benefit the fabrication of nanowire-based nanodevices.

Formation of Silica Nanowires by Using Silicon Oxide Films: Oxygen Effect (산화 실리콘 막을 이용한 실리카 나노 와이어의 형성 : 산소 효과)

  • Yoon, Jong-Hwan
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1203-1207
    • /
    • 2018
  • In this study, silica nanowires were formed using silicon oxide films with different oxygen contents, and their microstructure and physical properties were compared with those of silica nanowires formed using Si wafers. The silicon oxide films were fabricated by using a plasma-enhanced chemical vapor deposition method. Silica nanowires were formed by thermally annealing silicon oxide films coated with nickel films as a catalyst. In the case of silicon oxide films having an oxygen content of approximately 50 at.% or less, the formation mechanism, microstructure, and physical properties of the nanowires were not substantially different from those of the silicon wafer. In particular, the uniformity of the thickness showed better behavior in the silicon oxide films. These results imply that silicon oxide films can be used as an alternative for fabricating high-quality silica nanowires at low cost.

Properties of Silicon Nanowires grown by RFCVD (RFCVD 장치를 이용하여 성장한 실리콘 나노와이어의 특성)

  • Kim, Jae-Hoon;Lee, Hyung-Joo;Shin, Seok-Seung;Kim, Ki-Young;Go, Chun-Soo;Kim, Hyun-Suk;Hwang, Yong-Gyoo;Lee, Choong-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.2
    • /
    • pp.101-105
    • /
    • 2007
  • We have synthesized silicon nanowires by using RFCVD(Radio Frequency Chemical Vapor Deposition) system on Au deposited p-type Si(100) wafers, and investigated their physical and electrical properties. The silicon nanowires had been grown in the atmospheres of $H_{2},\;N_{2}\;and\;SiH_{4}$ at 10 Torr at the substrate temperatures of $700{\pm}5^{\circ}C\;and\;810{\pm}5^{\circ}C$ respectively. FE-SEM analysis revealed that diameters of the silicon nanowires are $50{\sim}60nm$ with the length of several ${\mu}m$. XRD analysis showed that the growth direction of the nanowires is Si[111]. Field emission characteristics showed that the turn-of voltages at the current of $0.01\;mA/cm^{2}$ are $10\;V/{\mu}m\;and\;8.5\;V/{\mu}m$ for the wires grown at $700{\pm}5^{\circ}C\;and\;810{\pm}5^{\circ}C$, respectively.

Fabrication and Characterization of Free-Standing Silicon Nanowires Based on Ultrasono-Method

  • Lee, Sung-Gi;Sihn, Donghee;Um, Sungyong;Cho, Bomin;Kim, Sungryong;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.6 no.3
    • /
    • pp.170-175
    • /
    • 2013
  • Silicon nanowires were detached and obtained from silicon nanowire arrays on silicon substrate using a ultrasono-method. Silicon nanowire arrays on silicon substrate were prepared with an electroless metal assisted etching of p-type silicon. The etching solution was an aqueous HF solution containing silver nitrate. SEM observation shows that well-aligned nanowire arrays perpendicular to the surface of the silicon substrate were produced. After sonication of silicon nanowire array, an individual silicon nanowire was confirmed by FESEM. Optical characteristics of SiNWs were measured by FT-IR spectroscopy. The surface of SiNWs are terminated with hydrogen.

Morphological evolution of ZnO nanowires using varioussubstrates

  • Kar, J.P.;DAS, S.N.;Choi, J.H.;Myoung, J.M.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.27.1-27.1
    • /
    • 2009
  • In recent years, ZnO nanostructures have drawn considerable attentions for the development of futuristic electronic devices due to their superior structural and optical properties. As the growth of ZnO nanowires by MOCVD is a bottom-up technique, the nature of substrates has a vital role for the dimension and alignment of the nanowires. However, in the pursuit of next generation ZnO based nanodevices, it would be highly preferred if well-ordered ZnO nanowires could be obtained on various substrates like sapphire, silicon, glass etc. Vertically aligned nanowires were grown on A and C-plane sapphire substrates, where as nanopencils were obtained on R-plane sapphire substrates. In addition, C-axis oriented vertical nanowires were also found using an interfacial layer(aluminum nitride film) on silicon substrates. On the other hand, long nanowires were found on Ga-doped ZnO film on glass substrates. Structural and optical properties of the ZnO nanowires on various substrates were also investigated.

  • PDF

Aspect ratio enhancement of ZnO nanowires using silicon microcavity

  • Kar, J.P.;Das, S.N.;Choi, J.H.;Lee, Y.A.;Lee, T.Y.;Myoung, J.M.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.34.1-34.1
    • /
    • 2009
  • A great deal of attention has been focused on ZnO nanowires for various electronics and optoelectronics applications. in the pursuit of next generation nanodevices, it would be highly preferred if well-ordered ZnO nanowires of lower dimension could be fabricated on silicon. Before the growth of nanowires, silicon substrates were selectively etched using silicon nitride as masking layer. Vertical aligned ZnO nanowires were grown by metal organic chemical vapor deposition on patterned silicon substrate. The shape of nanostructures was greatly influenced by the micropatterned surface of the substrate. The aspect ratio, packing fraction and the number density of nanowires on top surface are around 10, 0.8 and $10^7\;per\;mm^2$, respectively, whereas the values are 20, 0.3 and $5\times10^7\;per\;mm^2$, respectively, towards the bottom of the cavity. XRD patterns suggest that the nanostructures have good crystallinity. High-resolution transmission electron microscopy confirmed the single crystalline growth of the ZnO nanowires along [0001] direction.

  • PDF

Nanogap Array Fabrication Using Doubly Clamped Freestanding Silicon Nanowires and Angle Evaporations

  • Yu, Han-Young;Ah, Chil-Seong;Baek, In-Bok;Kim, An-Soon;Yang, Jong-Heon;Ahn, Chang-Guen;Park, Chan-Woo;Kim, Byung-Hoon
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.351-356
    • /
    • 2009
  • We present a simple semiconductor process to fabricate nanogap arrays for application in molecular electronics and nano-bio electronics using a combination of freestanding silicon nanowires and angle evaporation. The gap distance is modulated using the height of the silicon dioxide, the width of the Si nanowires, and the evaporation angle. In addition, we fabricate and apply the nanogap arrays in single-electron transistors using DNA-linked Au nanoparticles for the detection of DNA hybridization.