• Title/Summary/Keyword: Silicon etching

Search Result 740, Processing Time 0.026 seconds

Fabrication of Single Crystal Silicon Micro-Tensile Test Specimens and Thin Film Aluminum Markers for Measuring Tensile Strain Using MEMS Processes (MEMS 공정을 이용한 단결정 실리콘 미세 인장시편과 미세 변형 측정용 알루미늄 Marker의 제조)

  • 박준식;전창성;박광범;윤대원;이형욱;이낙규;이상목;나경환;최현석
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.285-289
    • /
    • 2004
  • Micro tensile test specimens of thin film single crystal silicon for the most useful structural materials in MEMS (Micro Electro Mechanical System) devices were fabricated using SOI (Silicon-on-Insulator) wafers and MEMS processes. Dimensions of micro tensile test specimens were thickness of $7\mu\textrm{m}$, width of 50~$350\mu\textrm{m}$, and length of 2mm. Top and bottom silicon were etched using by deep RIE (Reactive Ion Etching). Thin film aluminum markers on testing region of specimens with width of $5\mu\textrm{m}$, lengths of 30~$180\mu\textrm{m}$ and thickness of 200 nm for measuring tensile strain were fabricated by aluminum wet etching method. Fabricated side wall angles of aluminum marker were about $45^{\circ}~50^{\circ}$. He-Ne laser with wavelength of 633nm was used for checking fringed patterns.

Fabrication of Micro Diamond Tip Cantilever for AFM and its Applications (AFM 부착형 초미세 다이아몬드 팁 켄틸레버의 제작 및 응용)

  • Park J.W.;Lee D.W.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.395-400
    • /
    • 2005
  • Nano-scale fabrication of silicon substrate based on the use of atomic force microscopy (AFM) was demonstrated. A specially designed cantilever with diamond tip, allowing the formation of damaged layer on silicon substrate by a simple scratching process, has been applied instead of conventional silicon cantilever for scanning. A thin damaged layer forms in the substrate at the diamond tip-sample junction along scanning path of the tip. The damaged layer withstands against wet chemical etching in aqueous KOH solution. Diamond tip acts as a patterning tool like mask film for lithography process. Hence these sequential processes, called tribo-nanolithography, TNL, can fabricate 2D or 3D micro structures in nanometer range. This study demonstrates the novel fabrication processes of the micro cantilever and diamond tip as a tool for TNL using micro-patterning, wet chemical etching and CVD. The developed TNL tools show outstanding machinability against single crystal silicon wafer. Hence, they are expected to have a possibility for industrial applications as a micro-to-nano machining tool.

  • PDF

Fabrication of Micro Diamond Tip Cantilever for AFM-based Tribo-Nanolithography (AFM 기반 Tribo-Nanolithography 를 위한 초미세 다이아몬드 팁 켄틸레버의 제작)

  • Park Jeong-Woo;Lee Deug-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.39-46
    • /
    • 2006
  • Nano-scale fabrication of silicon substrate based on the use of atomic force microscopy (AFM) was demonstrated. A specially designed cantilever with diamond tip, allowing the formation of damaged layer on silicon substrate by a simple scratching process, has been applied instead of conventional silicon cantilever for scanning. A thin mask layer forms in the substrate at the diamond tip-sample junction along scanning path of the tip. The mask layer withstands against wet chemical etching in aqueous KOH solution. Diamond tip acts as a patterning tool like mask film for lithography process. Hence these sequential processes, called tribo-nanolithography, TNL, can fabricate 2D or 3D micro structures in nanometer range. This study demonstrates the novel fabrication processes of the micro cantilever and diamond tip as a tool for TNL using micro-patterning, wet chemical etching and CVD. The developed TNL tools show outstanding machinability against single crystal silicon wafer. Hence, they are expected to have a possibility for industrial applications as a micro-to-nano machining tool.

A Silicon Piezoresistive Accelerometer with Silicon-on-insulator Structure (Silicon-no-insulatir 구조를 갖는 실리콘 압저항 가속도계)

  • 양의혁;양상식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.1036-1038
    • /
    • 1994
  • In this paper, a silicon piezoresistive accelerometer is designed and fabricated using a silicon direct bonded wafer. The accelerometer consists of a seismic mass and four cantilevers, and is fabricated mainly by the anisotropic etching method using EPW as an etchant. The measured sensitivity and the resonant frequency are 0.02 mV/V.g and 3.4 kHz, respectively. The nonlinearity is less than $\pm$0.3% of the full scale of the output.

  • PDF

TSV (Through Silicon Via)plasma etching technology for 3D IC

  • Jeong, Dae-Jin;Kim, Du-Yeong;Lee, Nae-Eung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.173-174
    • /
    • 2007
  • Through Silicon Via ( TSV)는 향후3D integration devices (CMOS image sensors) 와 보다 더 직접화되고 진보된 memory stack에 기여 할 것이다. 이는 한층 더 진보된 microprocessors system 을 구축 하리라 본다. 해서 본문은 TSV plasma etching processing 소개와 특히 Bosch process에 대한 개선 방법을 제시하고자 한다.

  • PDF

The Parametric Influence on Focused Ion Beam Processing of Silicon (집속이온빔의 공정조건이 실리콘 가공에 미치는 영향)

  • Kim, Joon-Hyun;Song, Chun-Sam;Kim, Jong-Hyeong;Jang, Dong-Young;Kim, Joo-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.70-77
    • /
    • 2007
  • The application of focused ion beam(FIB) technology has been broadened in the fabrication of nanoscale regime. The extended application of FIB is dependent on complicated reciprocal relation of operating parameters. It is necessary for successful and efficient modifications on the surface of silicon substrate. The primary effect by Gaussian beam intensity is significantly shown from various aperture size, accelerating voltage, and beam current. Also, the secondary effect of other process factors - dwell time, pixel interval, scan mode, and pattern size has affected to etching results. For the process analysis, influence of the secondary factors on FIB micromilling process is examined with respect to sputtering depth during the milling process in silicon material. The results are analyzed by the ratio of signal to noise obtained using design of experiment in each parameter.

Selective Removal of Mask by Mechanical Cutting for Micro-patterning of Silicon (마스크에 대한 기계적 가공을 이용한 단결정 실리콘의 미세 패턴 가공)

  • Jin, Won-Hyeog;Kim, Dae-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.60-67
    • /
    • 1999
  • Micro-fabrication techniques such as lithography and LIGA processes usually require large investment and are suitable for mass production. Therefore, there is a need for a new micro-fabrication technique that is flexible and more cost effective. In this paper a novel, economical and flexible method of producing micro-pattern on silicon wafer is presented. This method relies on selective removal of mask by mechanical cutting. Then micro-pattern is produced by chemical etching. V-shaped grooved of about 3 ${\mu}m$ wide and 2 ${\mu}m$ deep has been made on ${SiO_2}m$ coated silicon wafer with this method. This method may be utilized for making microstructures in MEMS application at low cost.

  • PDF

A Novel Micro-Machining Technique Using Mechanical and Chemical Methods (기계 및 화학적 가공법을 이용한 신 미세가공기술)

  • Lee, Jae-Joon;Kim, Dae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3113-3125
    • /
    • 1996
  • The objective of this study is to develop novel method named mechanical and chemical machining technique, which is capable of producing three dimensional patterns of few micrometers in dimension on a silicon wafer without the use of a mask. The strategy is to impart mechanical energy along the path of the pattern to be fabricated on a single crystal silicon by way on introdusing frictional interaction under controlled conditions. Then, the surface is preferentially etched to reveal the areas that have been mechanically energized. Upon completion of the etching process, the three dimensional pattern is produced on the silicon surface. Experiments have been conducted to identify the optimal tool material, geometery, as well as fabrication condition. The new technique introduced in this paper is significantly simpler than the conventional method which require sophisticated equipment and much time.

Investigation of Relationship between Etch Current and Morphology and Porosity of Porous Silicon

  • Jang, Seunghyun
    • Journal of Integrative Natural Science
    • /
    • v.3 no.4
    • /
    • pp.210-214
    • /
    • 2010
  • Relationship between etch current and morphology and porosity of porous silicon (PS) has been investigated. The gravimetric method is applied to measured the porosity of PS. As the current density increase, the silicon dissolution rate increases, resulting in a higher porosity and etching rate. The result shows that linear dependence of PS porosity and etching rate as a function of current density. The morphology of porous silicon was investigated by using cold field emission scanning electron micrograph (FE-SEM). The size of pores formed during anodization is predominantly controlled by the current density, with an increase in the pore size corresponding to an increase in the current density.

Fabrication and Characterization of Silole and Biotin-functionalized Rugate Porous Silicon

  • Kwon, Hyungjun
    • Journal of Integrative Natural Science
    • /
    • v.3 no.1
    • /
    • pp.24-27
    • /
    • 2010
  • Multi-functionalized rugate porous silicon (PSi) for biosensor was developed by hydrosilylation with silole and its further reaction with biotin groups. PSi was generated by an electrochemical etching of silicon wafer in aqueous ethanolic HF solution PSi prepared by using etching conditions showed that many sharp spectral lines can be obtained in the optical reflectivity spectrum. 1,1-hydrovinyl-2,3,4,5-tetraphenylsilole was obtained from the reaction of 1,1-dilithio-2,3,4,5-tetraphenyl-1,3-butadiene with dichlorovinylsilane. Multi-functionalized PSi with silole and biotin groups was characterized by UV-vis absorption spectroscopy, Ocean optics 2000 spectrometer, and fluorescence spectroscopy. Optical characteristics such as reflectivity and photoluminescence (PL) were observed. An increase of the reflection wavelength in the reflectivity spectrum by 20 nm was observed, indicative of a change in refractive indices induced by hydrosilylation of the silole and biotin groups to the rugate PSi. This red-shift was attributed to the replacement of some of the Si-H group of fresh rugate PSi with silole and biotin group.