• Title/Summary/Keyword: Silicon direct bonding

Search Result 73, Processing Time 0.024 seconds

Properties of Diamond-like Carbon(DLC) Thin Films deposited by Negative Ion Beam Sputter (I) (Negative ion beam sputter 법으로 증착한 DLC 박막의 특성 (I))

  • Kim, Dae-Yeon;Gang, Gye-Won;Choe, Byeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.459-463
    • /
    • 2000
  • Direct use of negative ions for modification of materials has opened new research such as charging-free ion implantation and new materials syntheses by pure kinetic bonding reactions. For these purposes, a new solid-state ce-sium ion source has been developed in the laboratory scale. In this paper, diamond like carbon(DLC) films were prepared on silicon wafer by a negative cesium ion gun. This system does not need any gas in the chamber; deposition occurs under high vacuum. The ion source has good control of the C- beam energy(from 80 to 150eV). The result of Raman spectrophotometer shows that the degree of diamond-like character in the films, $sp^3$ fraction, increased as ion beam energy increases. The nanoindentation hardness of the films also increases from 7 to 14 GPa as a function of beam energy. DLC films showed ultra-smooth surface(Ra~1$\AA$)and an impurity-free quality.

  • PDF

The Effects of Driving Waveform of Piezoelectric Industrial Inkjet Head for Fime Patterns (산업용 압전 잉크젯 헤드의 구동신호에 따른 특성)

  • Kim, Young-Jae;Yoo, Young-Seuck;Sim, Won-Chul;Park, Chang-Sung;Joung, Jae-Woo;Oh, Yong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1621-1622
    • /
    • 2006
  • This paper presents the effect of driving waveform for piezoelectric bend mode inkjet printhead with optimized mechanical design. Experimental and theoretical studies on the applied driving waveform versus jetting characteristic s were performed. The inkjet head has been designed to maximize the droplet velocity, minimize voltage response of the actuator and optimize the firing frequency to eject ink droplet. The head design was carried out by using mechanical simulation. The printhead has been fabricated with Si(100) and SOI wafers by MEMS process and silicon direct bonding method. To investigate how performance of the piezoelectric ceramic actuator influences on droplet diameter and droplet velocity, the method of stroboscopy was used. Also we observed the movement characteristics of PZT actuator with LDV(Laser Doppler Vibrometer) system, oscilloscope and dynamic signal analyzer. Missing nozzles caused by bubbles in chamber were monitored by their resonance frequency. Using the water based ink of viscosity of 4.8 cps and surface tension of 0.025N/m, it is possible to eject stable droplets up to 20kHz, 4.4m/s and above 8pL at the different applied driving waveforms.

  • PDF

Driving Per Nozzle By Various Waveform Depending On Resonance Frequency In Piezoelectric Inkjet Head (잉크젯 헤드의 공진주파수에 따른 구동파형을 이용한 개별노즐 제어)

  • Kim, Y.J.;Park, C.S.;Sim, W.C.;Kang, P.J.;Yoo, Y.S.;Park, J.H.;Joung, J.W.;Oh, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1542-1543
    • /
    • 2007
  • This paper presents the effect of driving waveform for piezoelectric bend mode inkjet printhead with optimized mechanical design. Experimental and theoretical studies on the applied driving waveform versus jetting characteristics were performed. The inkjet head has been designed to maximize the droplet velocity, minimize voltage response of the actuator and optimize the firing frequency to eject ink droplet. The head design was carried out by using mechanical simulation. The printhead has been fabricated with Si(100) and SOI wafers by MEMS process and silicon direct bonding method. To investigate how performance of the piezoelectric ceramic actuator influences on droplet diameter and droplet velocity, the method of stroboscopy was used. Using the water based ink of viscosity of 11.8 cps and surface tension of 0.025N/m, it is possible to eject stable droplets through 64 nozzles average velocity of 4.05 m/s with standard deviation of 0.06 m/s and average diameter of $29.2\;{\mu}m$ with standard variation of $0.5\;{\mu}m$.

  • PDF