• Title/Summary/Keyword: Silicon compounds

Search Result 90, Processing Time 0.025 seconds

Ring Flipping of Seven-membered and Eight-membered Dithienodisila-heterocycles

  • Lee, In-Sook;Kwak, Young-Woo;Ghosh, Manikkumer;Ohshita, Joji;Choi, Cheol-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.377-380
    • /
    • 2008
  • Ground state structures and ring flipping transition states of eight- and seven-membered silicon containing heterocyclic compounds such as dithienodisilacyclooctatriene and oxadithienodisilacycloheptadiene derivatives, respectively have theoretically been investigated. Although the bithienylene moiety of the derivatives does not change the ground state structures, they significantly increase the ring flipping barrier by 13-17 kcal/mol in the case of the eight-membered rings (2, 3, and 4) in comparison with that of silicon containing heterocyclic compound 6, chosen as a model. The same moiety increases the flipping barrier of seven-membered ring (5) is only slightly (3.3 kcal/mol) in comparison with that of model compound 7. Hence, it has been concluded that not only the existing ring strain of eight-membered ring but also the bithienylene moiety collectively increases the ring flipping barrier so as to prevent such conformational changes explaining anomalous NMR behaviour of dithienodisilacyclooctatriene derivatives (2-4). In contrast, the effect of substituents R1 and R2 at the olefinic carbons of the eight-membered ring on the flipping barrier turned out to be mild.

Reaction of Organic Halogen Compounds with metals (Part III) Metal Distribution in the Reaction Products and System of a Reaction between Organo Chloro Acid or Ester and Metals under Various Solvents (有機할로겐化合物과 金屬과의 反應 (第 3 報) 有機클로로酸 및 에스터와 各種金屬과의 反應生成物 및 反應系中의 金屬分布에 關하여)

  • Kim, You-Sun
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.1
    • /
    • pp.61-65
    • /
    • 1965
  • Metal distribution in the reaction products and system of reactions between organo chloro acid or ester and zinc, silicon, magnesium, and tin under acetonitrile, dioxane, and toluene solvent were determined by means of radioactive tracer prepared by means of a (n, ${\gamma}$) reaction. It was found that the solubility of the organo halogen metal complex was markedly increased in a hydrophilic solvent and was decreased in a nonpolar solvent which resulted in an increased metal distribution in the recovered metal or water washing of the recovered metal mixture. This was also true in the case of the reaction conducted in the presence of a carbonyl compound. The relative increase of the solubility of the metal complex in a hydrophilic solvent was in order of zinc, silicon, tin and magnesium, and in a nonpolar solvent, it was in order of silicon, tin, magnesium, and zinc. There was no formation of organo metallics throughout the reaction sequence. The result was discussed and the observed solvent influence on the present reaction path was criticized.

  • PDF

Electrochemical Characteristics of Si/SiO2/C Anode Material for Lithium-Ion Battery According to Addition of CNT and CNF Compounds (CNT와 CNF 복합첨가에 따른 Si/SiO2/C 음극활물질의 전기화학적 특성)

  • Seo, Jin-Seong;Yoon, Sang-Hyo;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.35-41
    • /
    • 2021
  • Silicon is a promising next-generation anode material for lithium-ion battery, and it has been studied for commercialization due to the high theoretical capacity. However, it has problems of the volume change during charge-discharge and the poor electrical conductivity. To solve these problems, formation of SiO2 and carbon coating on the surface of silicon crystal were performed to protect the side reaction and enhance the electrical conductivity of silicon. CNT and CNF were also added to mitigate the volume change and increase the conductivity. Physical properties of asprepared samples were analyzed by XRD, SEM, and EDS. Electrochemical characteristics were investigated by electrical conductivity measurement, EIS, CV and cycle performance test. (Si/SiO2/C)+CNT&CNF showed high electrical conductivity and low charge-transfer resistance, and the capacity was 1528 mAh/g at 1st cycle and 1055 mAh/g at 50th cycle with 83% capacity retention.

A Study on the Soldering Characteristic of 4 Bus Bar Crystalline Silicon Solar Cell on Infrared Lamp and Hot Plate Temperature Control (적외선 램프 및 핫 플레이트 온도 제어를 통한 4 Bus Bar 결정질 실리콘 태양전지 솔더링 특성에 관한 연구)

  • Lee, Jung Jin;Son, Hyoung Jin;Kim, Seong Hyun
    • Current Photovoltaic Research
    • /
    • v.5 no.3
    • /
    • pp.83-88
    • /
    • 2017
  • The growth of intermetallic compounds is an important factor in the reliability of solar cells. Especially, the temperature change in the soldering process greatly affects the thickness of the intermetallic compound layer. In this study, we investigated the intermetallic compound growth by Sn-diffusion in solder joints of solar cells. The thickness of the intermetallic compound layer was analyzed by IR lamp power and hot plate temperature control, and the correlation between the intermetallic compound layer and the adhesive strength was confirmed by a $90^{\circ}$ peel test. In order to investigate the growth of the intermetallic compound layer during isothermal aging, the growth of the intermetallic compound layer was analyzed at $85^{\circ}C$ and 85% for 500 h. In addition, the activation energy of Sn was calculated. The diffusion coefficient of the intermetallic compound layer was simulated and compared with experimental results to predict the long-term reliability.

A Study on the Physical and Chemical Properties of Teat Cup Liners (유두컵 라이너의 물리화학적 특성 조사)

  • Lee Jeong-chi;Park Hyoung-ryun;Kim Myeong-seon;Lee Chung-gil;Lee Chai-yong
    • Journal of Veterinary Clinics
    • /
    • v.22 no.2
    • /
    • pp.100-107
    • /
    • 2005
  • This study was carried out to investigate the physical and chemical properties of teat cup liners. The hardness of the liners was $50\~67$, and their fatigue to failure 38-1,185 cycles. The elongation and tensile strength of these liners were about $134 kgf/cm^2\;and\;473\%$, respectively. The infrared spectrum and the gas chromatogram revealed that the liner A was consisted of NR, SBR, and BR, with a composition ratio of 60:20:20 (part per hundred rubber). The raw rubber materials used for liners B to G, on the other hand, were NBR only. However, the liner H was made of silicon rubber. The thermogravimetric analysis showed that the liners tested in this study contained raw rubber material, carbon black, organic compounds and metallic compounds.

New Boron Compound, Silicon Boride Ceramics for Capturing Thermal Neutrons (Possibility of the material application for nuclear power generation)

  • Matsushita, Jun-ichi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.15-15
    • /
    • 2011
  • As you know, boron compounds, borax ($Na_2B_4O_5(OH)_4{\cdot}8H_2O$) etc. were known thousands of years ago. As for natural boron, it has two naturally occurring and stable isotopes, boron 11 ($^{11}B$) and boron 10 ($^{10}B$). The neutron absorption $^{10}B$ is included about 19~20% with 80~81% $^{11}B$. Boron is similar to carbon in its capability to form stable covalently bonded molecular networks. The mass difference results in a wide range of ${\beta}$ values between the $^{11}B$ and $^{10}B$. The $^{10}B$ isotope, stable with 5 neutrons is excellent at capturing thermal neutrons. For example, it is possible to decrease a thermal neutron required for the nuclear reaction of uranium 235 ($^{235}U$). If $^{10}B$ absorbs a neutron ($^1n$), it will change to $^7Li+^1{\alpha}$ (${\alpha}$ ray, like $^4He$) with prompt ${\gamma}$ ray from $^{11}B$ $^{11}B$ (equation 1). $$^{10}B+^1n\;{\rightarrow}\;^{11}B\;{\rightarrow}\; prompt \;{\gamma}\;ray (478 keV), \;^7Li+4{\alpha}\;(4He)\;\;\;\;{\cdots}\; (1)$$ If about 1% boron is added to stainless steel, it is known that a neutron shielding effect will be 3 times the boron free steel. Enriched boron or $^{10}B$ is used in both radiation shielding and in boron neutron capture therapy. Then, $^{10}B$ is used for reactivity control and in emergency shutdown systems in nuclear reactors. Furthermore, boron carbide, $B_4C$, is used as the charge of a nuclear fission reaction control rod material and neutron cover material for nuclear reactors. The $B_4C$ powder of natural B composition is used as a charge of a control material of a boiling water reactor (BWR) which occupies commercial power reactors in nuclear power generation. The $B_4C$ sintered body which adjusted $^{10}B$ concentration is used as a charge of a control material of the fast breeder reactor (FBR) currently developed aiming at establishment of a nuclear fuel cycle. In this study for new boron compound, silicon boride ceramics for capturing thermal neutrons, preparation and characterization of both silicon tetraboride ($SiB_4$) and silicon hexaboride ($SiB_6$) and ceramics produced by sintering were investigated in order to determine the suitability of this material for nuclear power generation. The relative density increased with increasing sintering temperature. With a sintering temperature of 1,923 K, a sintered body having a relative density of more than 99% was obtained. The Vickers hardness increased with increasing sintering temperature. The best result was a Vickers hardness of 28 GPa for the $SiB_6$ sintered at 1,923K for 1 h. The high temperature Vickers hardness of the $SiB_6$ sintered body changed from 28 to 12 GPa in the temperature range of room temperature to 1,273 K. The thermal conductivity of the SiB6 sintered body changed from 9.1 to 2.4 W/mK in the range of room temperature to 1,273 K.

  • PDF

Heat Risk Assessment of Wood Coated with Silicone Compounds (실리콘 화합물로 도포된 목재의 열위험성 평가)

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.9-19
    • /
    • 2019
  • Experiments on the combustion characteristics of untreated wood specimens and those treated with four types of silicone compounds were carried out using a cone calorimeter according to the ISO 5660-1 standard. 3-Aminopropyltrimethoxysilane (APTMS), 3-(2-aminoethylamino) propylmethyldimethoxysilane (AEAPMDMS), and 3-(2-aminoethylamino) propyltrimethoxysilane (AEAPTMS) were used as the silane compounds. The flame retardants were synthesized with sodium silicate and amino silane compounds. The measured time to ignition after combustion at an external heat flux of $50kW/m^2$ was 9 s to 11 s. Time to ignition was marked with a delayed value in the 3 s to 5 s range. The peak heat release rate ($HRR_{peak}$) was reduced by 5 to 20% compared with the uncoated specimen, and AEAPMDMS showed the highest initial fire risk. The total heat release (THR) was decreased by 1 to 22%. Compared to the untreated specimen, the fire performance index (FPI) of the specimens coated with silicone sol compounds increased by 1.5 to 2.2 fold. The fire growth index (FGI) of the AEAPMDMS specimen was increased by 30% and the others were decreased by 93 to 94%. Therefore, the fire risk of wood coated with silicone compounds was improved in terms of the heat risk properties.

Microstructural Characteristics of III-Nitride Layers Grown on Si(110) Substrate by Molecular Beam Epitaxy

  • Kim, Young Heon;Ahn, Sang Jung;Noh, Young-Kyun;Oh, Jae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.327.1-327.1
    • /
    • 2014
  • Nitrides-on-silicon structures are considered to be an excellent candidate for unique design architectures and creating devices for high-power applications. Therefore, a lot of effort has been concentrating on growing high-quality III-nitrides on Si substrates, mostly Si(111) and Si(001) substrates. However, there are several fundamental problems in the growth of nitride compound semiconductors on silicon. First, the large difference in lattice constants and thermal expansion coefficients will lead to misfit dislocation and stress in the epitaxial films. Second, the growth of polar compounds on a non-polar substrate can lead to antiphase domains or other defective structures. Even though the lattice mismatches are reached to 16.9 % to GaN and 19 % to AlN and a number of dislocations are originated, Si(111) has been selected as the substrate for the epitaxial growth of nitrides because it is always favored due to its three-fold symmetry at the surface, which gives a good rotational matching for the six-fold symmetry of the wurtzite structure of nitrides. Also, Si(001) has been used for the growth of nitrides due to a possible integration of nitride devices with silicon technology despite a four-fold symmetry and a surface reconstruction. Moreover, Si(110), one of surface orientations used in the silicon technology, begins to attract attention as a substrate for the epitaxial growth of nitrides due to an interesting interface structure. In this system, the close lattice match along the [-1100]AlN/[001]Si direction promotes the faster growth along a particular crystal orientation. However, there are insufficient until now on the studies for the growth of nitride compound semiconductors on Si(110) substrate from a microstructural point of view. In this work, the microstructural properties of nitride thin layers grown on Si(110) have been characterized using various TEM techniques. The main purpose of this study was to understand the atomic structure and the strain behavior of III-nitrides grown on Si(110) substrate by molecular beam epitaxy (MBE). Insight gained at the microscopic level regarding how thin layer grows at the interface is essential for the growth of high quality thin films for various applications.

  • PDF

Biodegradation of Toluene using Biofilms in a Bubble Column Bioreactor

  • Choi, Yong-Bok;Lee, Jang-Young;Kim, Hak-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.41-47
    • /
    • 1995
  • Biodegradation of toluene in liquid effluent stream was carried out using biofilms of Pseudomonas putida formed on celite particles in the bubble column bioreactor. Silicon rubber tubing was installed at the bottom of the bioreactor and liquid toluene was circulated within the tubing. Toluene diffused out of the tube wall and was transferred into the culture broth where degradation by biofilms occurred. The operating variables affecting the formation of biofihns on celite particles were investigated in the bubble column bioreactor, and it was found that formation of bifilm is favored by high dilution rate and supply rate of carbon source which stimulate the growth of initially attached cells. Continuous biodegradation of toluene using biofilms was stablely conducted in the bioreactor for more than one month without any significant fluctuation, showing a removal efficiency higher than 95% at the toluene transfer rate of 1.2 g/L/h.

  • PDF

Tilted Homeotropic Alignment using Ion Beam Process; Development of Novel Inorganic thin films

  • Hwang, Byoung-Har;Kim, Kyung-Chan;Ahn, Han-Jin;Kim, Jong-Bok;Baik, Hong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.450-452
    • /
    • 2005
  • The ion beam alignment technique is one of the potential and fascinating methods. However, there are merely a few reports about aligning nematic liquid crystals (NLCs) horizontally for in-plane switching mode (IPS) by means of low energy ion beam exposure on inorganic materials such as DLC. In this study, we have investigated the tilted vertical alignment of NLC by the ion beam technique on the thin films of various amorphous silicon compounds as new inorganic alignment materials. Appropriate pretilt angles of NLC with preferred orientation on these thin films were achieved. And the electro-optic property of vertically aligned single domain cells has been investigated.

  • PDF