• Title/Summary/Keyword: Silicon carbide fiber

Search Result 65, Processing Time 0.026 seconds

A Study on Texture Development in Liquid-Phase Sintered Silicon Carbide (액상소결한 탄화규소의 집합조직 발달에 관한 연구)

  • 성한규;조경식;박노진;최헌진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.320-326
    • /
    • 2000
  • Development of texture in SiC materials by hot-pressing and subsequent annealing was studied. Crystallographic texture type was characterized by measuring X-ray pole figures on the perpendicular plane to the hot-pressing direction. Observed all pole figures were nearly axially symmetric (fiber texture). In case of ${\beta}$-SiC materials, the pole density of basal plane (0004) increased as annealing time increased, in contrast, other planes (hkil) of ${\beta}$-SiC materials and all planes of ${\alpha}$-SiC materials nearly remained unchanged. In the case of ${\beta}$-SiC materials, therefore, a weak texture of (0001) plane at the normal direction took place in the 8h annealed samples, resulting from grian growth. The fracture toughness values of ${\alpha}$-SiC materials measured in both planes parallel and perpendicular to the hot-pressing direction were very similar. However, the fracture toughness of ${\beta}$-SiC materials measured parallel to the hot-pressing direction were higher than that measured perpendicular to the hot-pressing derection, relatively, because of the texture and the microstructure anisotropy.

  • PDF

Compressive Fracture Behavior of C/SiC composite fabricated by Liquid Silicon Infiltration (LSI 공법으로 제작된 C/SiC 복합재의 압축거동 평가)

  • Yoon, Dong Hyun;Kim, Jae Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • The effects of the fiber direction, specimen size and temperature on the compressive strength of carbon fiber reinforced silicon carbide composite (C/SiC composite) manufactured by liquid silicon infiltration(LSI) is investigated. Tests were conducted in accordance with ASTM C 695 at room temperature and elevated temperatures. Experiments are conducted with two different specimens considering grain direction. With grain (W/G) specimens have a carbon fibers parallel to the load direction, but across grain (A/G) specimens have a perpendicular carbon fibers. To verify the specimen size effect of C/SiC composite, two types of specimens are manufactured. One has a one to two ratio of diameter to height and the other has a one to one ratio. The compressive strength of C/SiC composite increased as temperature rise. As specimens are larger, compressive strength of A/G specimens increased, however compressive strength of W/G decreased.

Wear behavior of $Si_3N_4$-SiC nanocomposite in water

  • Kim, S. H.;Lee, S. W.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.187-187
    • /
    • 1997
  • Silicon nitride is the most excellent materials among structural ceramics. It has been reported that fracture toughness was improved with adding second phase particles, whisker, fiber etc. However, containing of second phase particles enhanced fracture toughness, however flexural strength was degraded. As adding nanosize SiC particles into silicon nitride, the physical properties of fluxural strength, fracture toughness, the modulus of elasticity. In this study, 2wt% $Al_2$O$_3$ and 4 wt% $Y_2$O$_3$ were added into UBE E-10 and 0, 10, 20, 30, 40, 50 vol% nano-SiC powder (Sumitomo T1 powder) were added, respectively. It is hot pressed at 185$0^{\circ}C$ for 1 hour. Most of structural ceramics for engineering application are wear resistance. In this study, wear behaviors (in water) of silicon nitride with varying the amount of nano-size silicon carbide were investigated, and was compared to physical properties. Simultaneously wear mechanism will be found out.

  • PDF

Preparation and Application of Polysilane Derivatives (Polysilane 유도체의 합성과 그 응용)

  • Kang, Doo-Whan
    • Applied Chemistry for Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-10
    • /
    • 1990
  • Polysilane derivatives are attracting considerable attention as a new class of material since 1980. The preparation methods of low molecular weight, cyclic, and high molecular weight polysilane derivatives are described, and also photochemistry characteristics for silicon-silicon single bond and for the nature of the substituent on silicon backbone are discussed. Polysilanes may be used as a precursors to silicon carbide fiber, as photoresist in microelectronics, as photoconductor, and as photoinitatior for free radical polymerization.

  • PDF

Fabrication of SiC Fiber-SiC Matrix Composites by Reaction Sintering

  • Lim, Kwang-Young;Kim, Young-Wook;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.204-207
    • /
    • 2008
  • This paper presents a new process for producing SiC fiber-SiC matrix(SiC/SiC) composites by reaction sintering. The processing strategy for the fabrication of the SiC/SiC composites involves the following: (1) infiltration of the SiC fiber fabric using a slurry consisting of Si and C precursors, (2) stacking the slurry-infiltrated SiC fiber fabric at room temperature, (3) cross-linking the stacked composites, (4) pyrolysis of the stacked composites, and (5) hot-pressing of the pyrolyzed composites. It was possible to obtain dense SiC/SiC composites with relative densities of >96% and a typical flexural strength of ${\sim}400$ MPa.

Fabrication and Characterization of Environmental Barrier Coatings by Spray Drying and Atmospheric Plasma Spraying for Protection of Silicon Carbide Ceramics (분무건조 및 대기 플라즈마 용사에 의한 탄화규소 세라믹스용 내환경 코팅재의 제조 및 평가)

  • Feng, Fan Jie;Moon, Heung Soo;Kwak, Chan Won;Park, Ji Yeon;Lee, Kee Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.481-486
    • /
    • 2014
  • Environmental barrier coatings (EBCs) are used to protect SiC-based ceramics or composites from oxidation and corrosion due to reaction with oxygen and water vapour at high temperatures above $1000^{\circ}C$. Mullite ceramics have been studied for environmental barrier coatings for Si-based ceramics. More recently, rare earth silicate ceramics have been identified as more water vapour-resistant materials than mullite for environmental barrier coatings. In this study, we fabricate mullite and yttrium silicate ceramics by an atmospheric plasma spray coating method using spherical granules fabricated by spray drying. As a result, EBCs with thicknesses in the range of $200-300{\mu}m$ are successfully fabricated without any macroscopic cracks or interfacial delamination. Phase and microstructure analysis are conducted, and the basic mechanical properties, such as hardness and indentation load-displacement curves are evaluated.

Mechanical properties of bamboo-epoxy composites a structural application

  • Biswas, Sandhyarani
    • Advances in materials Research
    • /
    • v.1 no.3
    • /
    • pp.221-231
    • /
    • 2012
  • In this study, the physical and mechanical properties of bamboo fiber reinforced epoxy composites were studied. Composites were fabricated using short bamboo fiber at four different fiber loading (0 wt%, 15 wt%, 30 wt% and 45 wt%). It has been observed that few properties increases significantly with respect to fiber loading, however properties like void fraction increases from 1.71% to 5.69% with the increase in fiber loading. Hence, in order to reduce the void fraction, improve hardness and other mechanical properties silicon carbide (SiC) filler is added in bamboo fiber reinforced epoxy composites at four different weight percentages (0 wt%, 5 wt%, 10 wt% and 15 wt%) by keeping fiber loading constant (45 wt%). The significant improvement of hardness (from 46 to 57 Hv) at 15 wt%SiC, tensile strength (from 10.48 to 13.44 MPa) at 10 wt% SiC, flexural strength (from 19.93 to 29.53 MPa) at 5 wt%SiC and reduction of void fraction (from 5.69 to 3.91%) at 5 wt%SiC is observed. The results of this study indicate that using particulate filled bamboo fiber reinforced epoxy composites could successfully develop a composite material in terms of high strength and rigidity for light weight applications compared to conventional bamboo composites. Finally, SEM studies were carried out to evaluate fibre/matrix interactions.

Heat-Generating Behavior of SiC Fiber Mat Composites Embedded with Ceramic Powder for Heat Conservation

  • Joo, Young Jun;Cho, Kwang Youn
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.583-588
    • /
    • 2019
  • Silicon carbide (SiC) fiber mats generate large amounts of heat through microwave interactions and are used as heating elements in rapid heat treatment furnaces. However, SiC fibers cool immediately when the microwave power is turned off. Therefore, ceramic layers are inserted between the SiC fiber layers to improve the heat conservation performance of SiC fiber mats. In this study, we fabricated SiC fiber mat composites (SMCs) with ceramic layers under various pressures. The SMC fabricated under 0.007 kPa showed the lowest heat-generating temperature and deviation because less necking was observed between the materials. On the other hand, the SMC fabricated under 0.375 kPa showed the highest heat-generating temperature of 1532.33℃. The SMCs prepared in this study using ceramic powder not only showed heat-generating temperatures comparable to those of conventional SiC fiber mats but also exhibited excellent heat-preserving ability.

Influence of Winding Patterns and Infiltration Parameters on Chemical Vapor Infiltration Behaviors of SiCf/SiC Composites (SiCf/SiC 복합체의 화학기상침착 거동에 미치는 권선 구조와 침착 변수의 영향)

  • Kim, Daejong;Ko, Myoungjin;Lee, Hyeon-Geun;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.453-458
    • /
    • 2014
  • SiC and its composites have been considered for use as nuclear fuel cladding materials of pressurized light water reactors. In this study, a $SiC_f$/SiC composite as a constituent layer of SiC triplex fuel cladding was fabricated using a chemical vapor infiltration (CVI) process in which tubular SiC fiber preforms were prepared using a filament winding method. To enhance the matrix density of the composite layer, winding patterns, deposition temperature, and gas input ratio were controlled. Fiber arrangement and porosity were the main parameters influencing densification behaviors. Final density of the composites decreased as the SiC fiber volume fraction increased. The CVI process was optimized to densify the tubular preforms with high fiber volume fraction at a high $H_2$/MTS ratio of 20 at $1000^{\circ}C$; in this process, surface canning of the composites was effectively retarded.

Effects of Carbon Fiber Arrangement on Properties of LSI Cf-Si-SiC Composites (탄소섬유 배열이 LSI Cf-Si-SiC 복합체의 특성에 미치는 영향)

  • Ji, Young-Hwa;Han, In-Sub;Kim, Se-Young;Seo, Doo-Won;Hong, Ki-Seog;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.561-566
    • /
    • 2008
  • Carbon fiber fabric-silicon carbide composites were fabricated by liquid silicon infiltration (LSI) process. The porous two-dimensional carbon fiber fabric performs were prepared by 13 plies of 2D-plain-weave fabric in a three laminating method, [0/90], [${\pm}45$], [$0/90/{\pm}45$] lay-up, respectively. Before laminating, a thin pyrolytic carbon (PyC) layer deposited on the surface of 2D-plain weave fabric sheets as interfacial layer with $C_3H_8$ and $N_2$ gas at $900^{\circ}C$. A densification of the preforms for $C_f-Si-SiC$ matrix composite was achieved according to the LSI process at $1650^{\circ}C$ for 30 min. in vacuum atmosphere. The bending strength of the each composite were measured and the microstructural consideration was performed by a FE-SEM.