• Title/Summary/Keyword: Silicon Crystallization

Search Result 240, Processing Time 0.026 seconds

Microwave-Enhanced Low-Temperature Crystallization of Amorphous Silicon Films for TFTs

  • Ahn, Jin-Hyung;Eom, Ji-Hye;Ahn, Byung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.177-180
    • /
    • 2002
  • Microwave has been utilized for low-temperature crystallization of amorphous Si films. Microwave annealing lowered the crystallization temperature and shortened the annealing time. The combination of Ni and microwave applications on a-Si films further enhanced the crystallization. The enhancement was due to both reduced nucleation activation energy and growth activation energy.

  • PDF

Enhanced Crystallization of Amorphous Si Using viscous Ni Solution and Microwave Annealing

  • Ahn, Jin-Hyung;Eom, Ji-Hye;Ahn, Byung-Tae
    • Journal of Information Display
    • /
    • v.2 no.2
    • /
    • pp.7-12
    • /
    • 2001
  • A viscous Ni solution was coated over amorphous Si thin film for evenly spread of Ni metal source. The Ni s. prepared by dissolving $NiCl_2$ into IN HCI and mixing with propylene glycol. $NiCl_2$ and Ni were deposited on the amorphous film after oven dry and they enabled to obtain a uniform crystallization. The crystallization using the viscous Ni solution was a Ni-silicide mediated process, the same process used with Ni metal layer. The crystallization temperature was lowered to $480^{\circ}C$ by the synergy effect of silicide-mediated crystallization and microwave-induced crystallization. Lateral crystallization was also enhanced such that the velocity of lateral crystallization by microwave annealing became faster than by furnace annealing.

  • PDF

Laser Crystallization of a-Si:H films prepared at Ultra Low Temperature($<150^{\circ}C$) by Catalytic CVD

  • Lee, Sung-Hyun;Hong, Wan-Shick;Kim, Jong-Man;Lim, Hyuck;Park, Kuyng-Bae;Cho, Chul-Lae;Lee, Kyung-Eun;Kim, Do-Young;Jung, Ji-Sim;Kwon, Jang-Yeon;Noguch, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1116-1118
    • /
    • 2005
  • We studied laser crystallization of amorphous silicon films prepared at ultra low temperatures ($<150^{\circ}C$). Amorphous silicon films having a low content of hydrogen were deposited by using catalytic chemical vapor deposition method. Influence of process parameters on the hydrogen content was investigated. Laser crystallization was performed dispensing with the preliminary dehydrogenation process. Crystallization took place at a laser energy density value as low as $70\;mJ/cm^2$, and the grain size increased with increasing the laser energy. The ELA crystallization of Catalytic CVD a-Si film is a promising candidate for Poly-Si TFT in active-matrix flexible display on plastic substrates.

  • PDF

Crystallization of amorphous silicon films below $450^{\circ}C$ by FALC ($450^{\circ}C$ 이하에서 FALC 공정에 의한 비정질 실리콘의 결정화)

  • 박경완;유정은;최덕균
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.4
    • /
    • pp.210-214
    • /
    • 2002
  • The crystallization behavior of amorphous silicon (a-Si) film was investigated by using Cu-field aided lateral crystallization (Cu-FALC) process below $450^{\circ}C$. The lateral crystallization was induced from the Cu deposited region outside of pattern toward the Cu-free region inside of the pattern by applying an electric field during heat treatment. As expected, the lateral crystallization toward Cu-free region proceeded from negative toward positive electrode side. The occurrence of Cu-FALC phenomenon was interpreted in terms of dominant diffusing species in the reaction between Cu and Si. Even at the annealing temperature of $350^{\circ}C$, the large dendrite-shaped branches were formed in the crystallized region and the polarity in the lateral crystallization was clearly observed. Consequently, we could successfully crystallize the a-Si at the temperature as low as $350^{\circ}C$ by an electric field of 30 V/cm with fast crystallization velocity of 12 $\mu$m/h.

Investigation of aluminum-induced crystallization of amorphous silicon and crystal properties of the silicon film for polycrystalline silicon solar cell fabrication (다결정 실리콘 태양전지 제조를 위한 비정절 실리콘의 알루미늄 유도 결정화 공정 및 결정특성 연구)

  • Jeong, Hye-Jeong;Lee, Jong-Ho;Boo, Seong-Jae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.6
    • /
    • pp.254-261
    • /
    • 2010
  • Polycrystalline silicon (pc-Si) films are fabricated and characterized for application to pc-Si thin film solar cells as a seed layer. The amorphous silicon films are crystallized by the aluminum-induced layer exchange (ALILE) process with a structure of glass/Al/$Al_2O_3$/a-Si using various thicknesses of $Al_2O_3$ layers. In order to investigate the effects of the oxide layer on the crystallization of the amorphous silicon films, such as the crystalline film detects and the crystal grain size, the $Al_2O_3$ layer thickness arc varied from native oxide to 50 nm. As the results, the defects of the poly crystalline films are increased with the increase of $Al_2O_3$ layer thickness, whereas the grain size and crystallinity are decreased. In this experiments, obtained the average pc-Si sub-grain size was about $10\;{\mu}m$ at relatively thin $Al_2O_3$ layer thickness (${\leq}$ 16 nm). The preferential orientation of pc-Si sub-grain was <111>.

MPC Based Feedforward Trajectory for Pulling Speed Tracking Control in the Commercial Czochralski Crystallization Process

  • Lee Kihong;Lee Dongki;Park Jinguk;Lee Moonyong
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.252-257
    • /
    • 2005
  • In this work, we propose a simple but efficient method to design a target temperature trajectory for pulling speed tracking control of the crystal grower in the Czochralski crystallization process. In the suggested method, the model predictive control strategy is used to incorporate the complex dynamic effect of the heater temperature on the pulling speed into the temperature trajectory design quantitatively. The feedforward trajectories designed by the proposed method were implemented on 200 mm and 300 mm silicon crystal growers in the commercial Czochralski process. The application results have demonstrated its excellent and consistent tracking performance of pulling speed along whole bulk crystal growth.

Edge Cut Process for Reducing Ni Content at Channel Edge Region in Metal Induced Lateral Crystallization Poly-Si TFTs

  • SEOK, Ki Hwan;Kim, Hyung Yoon;Park, Jae Hyo;Lee, Sol Kyu;Lee, Yong Hee;Joo, Seung Ki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.166-171
    • /
    • 2016
  • Nickel silicide is main issue in Polycrystalline silicon Thin Film Transistor (TFT) which is made by Metal Induced Lateral Crystallization (MILC) method. This Nickel silicide acts as a defect center, and this defect is one of the biggest reason of the high leakage current. In this research, we fabricated polycrystalline TFTs with novel method called Edge Cut (EC). With this new fabrication method, we assumed that nickel silicide at the edge of the channel region is reduced. Electrical properties are measured and trap state density also calculated using Levinson & Proano method.

Microstructural improvement in polycrystalline Si films by crystallizing with vapor transport of Al/Ni chlorides

  • Eom, Ji-Hye;Lee, Kye-Ung;Jun, Young-Kwon;Ahn, Byung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.315-318
    • /
    • 2004
  • We developed a vapor induced crystallization (VIC) process for the first time to obtain high quality polycrystalline Si films by sublimating the mixture of $AlCl_3$ and $NiCl_2$. The VIC process enhanced the crystallization of amorphous silicon thin films. The LPCVD amorphous silicon thin films were completely crystallized after 5 hours at 480 $^{\circ}C$. It is known that needle-like grains with very small width grow in the Ni-metal induced lateral crystallization. In our new method, the width of grains is larger because the grain can also grow perpendicular to the needle growth direction. Also the interface between the merging grain boundaries was coherent. As the results, a polycrystalline film with superior microstructure has been obtained.

  • PDF

Laser Induced Crystallizatioo of Amorphous Si Films on Glass Substrates (유리 기판을 이용한 비정질 실라콘 박막의 결정화)

  • Kim, P.K.;Moon, S.J.;Jeong, S.H.
    • Laser Solutions
    • /
    • v.13 no.1
    • /
    • pp.6-10
    • /
    • 2010
  • Crystallization of 100 nm thick amorphous silicon (a-Si) films on glass substrates was carried out by using a double laser irradiation method. Depending on a-Si deposition method or glass types, the quality of crystallized silicon film varies significantly. For a-Si films deposited with high concentration of impurities, large grains or high crystallinity can not be achieved. Crystallization with different a-Si deposition methods confirmed that for the polycrystallization of a-Si films on glass substrates, controlling the impurity density during substrate preparation is critical.

  • PDF

Low temperature solid phase crystallization of amorphous silicon thin film by crystalline activation

  • Kim, Hyung-Taek;Kim, Young-Kwan
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.2
    • /
    • pp.97-100
    • /
    • 1998
  • We have investigated the effects of crystalline activation on solid phase crystallization (SPC) of amorphous silicon (a-Si) thin films. Wet blasting and self ion implantation were employed as the activation treatments to induce macro or micro crystalline damages on deposited a-Si films. Low temperature and larger grain crystallization were obtained by the applied two-step activation. High degree of crystallinity was also observed on both furnace and rapid SPC. crystalline activations showed the promotion of nucleation on the activated regions and the retardation of growth in an amorphous matrix in SPC. The observed behavior of two-step SPC was strongly dependent on the applied activation and annealing processes. It was also found that the diversified effects by macro and micro activations on the SPC were virtually diminished as the annealing temperature increased.

  • PDF