• Title/Summary/Keyword: Silicon

검색결과 8,513건 처리시간 0.027초

Benzophenone과 알킬 그룹으로 Capping된 실리콘 나노입자의 안정성에 대한 산화 연구 (Investigation of Oxidation of Silicon Nanoparticles Capped with Butyl and Benzophenone against Its Stabilization)

  • 장승현
    • 통합자연과학논문집
    • /
    • 제3권3호
    • /
    • pp.133-137
    • /
    • 2010
  • New synthetic route and characterization of alkyl-capped nanocrystalline silicon (R-n-Si) were achieved from the reaction of silicon tetrachloride with sodium/benzophenone ketal reducing agent followed by n-butyllithium. Surface of silicon nanoparticles was derivatized with butyl group. Effect of oxidation of silicon nanoparticle with benzophenone was investigated for their stabilization. Optical characteristics of silicon nanoparticles were characterized by fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), and photoluminescence (PL) spectroscopy. Butyl-capped silicon nanoparticles exhibited an emission band at 410 nm with excitation wavelength of 360 nm. Average size of n-butyl-capped silicon nanoparticles was obtained by particle size analyzer (PSA) and transmission electron microscopy (TEM). Average size of n-butyl-capped Si nanoparticles was about 6.5 nm.

Fabrication via Ultrasonication and Study of Silicon Nanoparticles

  • Kim, Jin Soo;Sohn, Honglae
    • 통합자연과학논문집
    • /
    • 제8권3호
    • /
    • pp.147-152
    • /
    • 2015
  • Photoluminescent porous silicon (PSi) were prepared by an electrochemical etch of n-type silicon under the illumination with a 300 W tungsten filament bulb for the duration of etch. The red photoluminescence emitting at 620 nm with an excitation wavelength of 450 nm is due to the quantum confinement of silicon nanocrystal in porous silicon. As-prepared PSi was sonicated, fractured, and centrifuged in toluene to obtain photoluminescence silicon quantum dots. BET and BHJ methods were employed to study the specific surface area of as-prepared PSi. Optical characterization of red photoluminescent silicon nanocrystal was investigated by UV-vis and fluorescence spectrometer. Also SEM and TEM images of porous silicon and nanoparticles were investigated.

Well Defined One-Dimensional Photonic Crystal Templated by Rugate Porous Silicon

  • Lee, Sung Gi
    • 통합자연과학논문집
    • /
    • 제6권3호
    • /
    • pp.183-186
    • /
    • 2013
  • Well defined 1-dimentional (1-D) photonic crystals of polystyrene replicas have been successfully obtained by removing the porous silicon from the free-standing rugate porous silicon/phenylmethylpolysiloxane composite film. Rugate porous silicon was prepared by an electrochemical etching of silicon wafer in HF/ethanol mixture solution. Exfoliated rugate porous silicon was obtained by an electropolishing condition. A composite of rugate porous silicon/phenylmethylpolysiloxane composite film was prepared by casting a toluene solution of phenylmethylpolysiloxane onto the top of rugate porous silicon film. After the removal of the template by chemical dissolution, the phenylmethylpolysiloxane castings replicate the photonic features and the nanostructure of the master. The photonic phenylmethylpolysiloxane replicas are robust and flexible in ambient condition and exhibit an excellent reflectivity in their reflective spectra. The photonic band gaps of replicas are narrower than that of typical semiconductor quantum dots.

Distributed Bragg Reflector, Microcavity 구조를 갖는 다공질규소의 반사율 스펙트럼 (Reflectance spectrum properties of DBR and microcavity porous silicon)

  • 김영유;김한중
    • 한국결정성장학회지
    • /
    • 제19권6호
    • /
    • pp.293-297
    • /
    • 2009
  • 본 연구에서는 p형 단결정 규소 기판을 에칭시켜 다층구조를 갖는 DBR 및 Microcavity 다공질규소를 제작하고, 그 반사율 스펙트럼을 조사하였다. 그 결과 다층구조를 갖는 다공질규소의 반사율 스펙트럼에서 프린지 패턴의 수는 단일층 다공질규소의 경우보다 상대적으로 많았으며, 특정 파장에서 반사율은 90 % 이상으로 나타났다. 그리고 DBR 다공질규소에서 최대 반사율 봉우리의 FWHM 값은 33 nm로 매우 좁게 나타났다.

Electrochemical Performance of Carbon/Silicon Composite as Anode Materials for High Capacity Lithium Ion Secondary Battery

  • Kim, Taek-Rae;Wu, Jing-Yu;Hu, Quan-Li;Kim, Myung-Soo
    • Carbon letters
    • /
    • 제8권4호
    • /
    • pp.335-339
    • /
    • 2007
  • Carbon/silicon composites were synthesized by mixing silicon powders with petroleum pitch and subsequent heat-treatment. The resultant composites were composed of carbon and nano-size crystalline silicon identified by XRD and EDX. FIB images and SEM images were taken respectively to detect the existence of silicon impregnated in carbon and the distribution of silicon on the carbon surface. The obtained carbon/silicon materials were assembled as half cell anodes for lithium ion secondary battery and their electrochemical properties were tested. The pitch/silicon composite (3 : 1 wt. ratio) heat treated at $1000^{\circ}C$ and mixed with 55.5 wt.% of graphite showed relatively good electrochemical properties such as the initial efficiency of 78%, the initial discharge capacity of 605 mAh/g, and the discharge capacity of 500 mAh/g after 20 cycles.

The Effects of Impurities in Silicon Nitride Substrate on Tribological Behavior between Diamond Film and Silicon Nitride Ball

  • Lim, Dae-Soon;Kim, Jong-Hoon
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.20-25
    • /
    • 1995
  • Diamond films were prepared by a hot filament vapor deposition onto polycrystal silicon nitride substrates. Different kinds of silicon nitride containing CaO and $Fe_{2}O_{3}$ were manufactured to investigate the impurity effect of substrate on the morphology of diamond films and their wear behaviors. Nucleation rates and morphologies of diamond films deposited on various kinds of silicon nitride were compared. The highest nucleation rate was observed in a substrate containing 1% of CaO. Wear tests were performed with a silicon nitride ball on the disk geometry to investigate the tribological behavior of diamond film against silicon nitride. This study demonstrated that different morphologies of diamond film due to substrate impurities produced different wear behavior against silicon nitride.

Synthesis and Surface-derivatization of Silicon Nanoparticles and their Photoluminescence and Stability

  • Lee, Sung-Gi;Lee, Bo-Yeon;Hwang, Minwoo;Cho, Hyun;Kim, Hee-Chol;Sohn, Honglae
    • 통합자연과학논문집
    • /
    • 제4권4호
    • /
    • pp.282-288
    • /
    • 2011
  • We describe the synthesis and characterization of silicon nanoparticles prepared by the solution reduction of silicon tetrachloride by lithium naphthalenide and subsequently with n-butyllithium at room temperature. These reactions produce silicon nanoparticles with surfaces that are covalently terminated with butyl group. Reaction with lithium aluminium hydride instead of n-butyllithium produces hydride-terminated silicon nanoparticles. The butyl or hydride terminated silicon nanoparticles can be suspended in hexane and their optical behavior have been characterized by photoluminescence spectroscopy. Stabilization of silicon nanoparticles were investigated upon illumination, indicating that as-prepared silicon nanoparticles are very stable at room temperature for several days.

Modeling on Hydrogen Effects for Surface Segregation of Ge Atoms during Chemical Vapor Deposition of Si on Si/Ge Substrates

  • Yoo, Kee-Youn;Yoon, Hyunsik
    • Korean Chemical Engineering Research
    • /
    • 제55권2호
    • /
    • pp.275-278
    • /
    • 2017
  • Heterogeneous semiconductor composites have been widely used to establish high-performance microelectronic or optoelectronic devices. During a deposition of silicon atoms on silicon/germanium compound surfaces, germanium (Ge) atoms are segregated from the substrate to the surface and are mixed in incoming a silicon layer. To suppress Ge segregation to obtain the interface sharpness between silicon layers and silicon/germanium composite layers, approaches have used silicon hydride gas species. The hydrogen atoms can play a role of inhibitors of silicon/germanium exchange. However, there are few kinetic models to explain the hydrogen effects. We propose using segregation probability which is affected by hydrogen atoms covering substrate surfaces. We derived the model to predict the segregation probability as well as the profile of Ge fraction through layers by using chemical reactions during silicon deposition.

원통형 메크로기공을 갖는 다공질 실리콘과 다이어프램의 제작 (Fabrication of Cylindrical Macroporous Silicon and Diaphragms)

  • 민남기;이치우;하동식;정우식
    • 한국전기전자재료학회논문지
    • /
    • 제11권8호
    • /
    • pp.620-627
    • /
    • 1998
  • For chemical microsensors such as humidity and gas sensors, it is essential to obtain a single pore with a large inner surface and straight structure. In this paper, cylindrical macroporous silicon layers have been formed of p-silicon substrate by anodization in HF-ethanol-water solution with an applied current. The pores grew normal to the (100) surface and were uniformly distributed. The pore diameter was approximately $1.5~2{\mu}m$ with a depth of $20~30{\mu}m$ and the pores were not interconnected, which are in sharp contrast to the porous silicon reported previouly for similarly doped p-Si. Porous silicon diaphragms 18 to $200{\mu}m$ thick were formed by anistropic etching in TMAH solution and then anodization. The fabrication of macroporous silicon and free-standing diaphragms is expected to offer applications for microsensors, micromachining, and separators.

  • PDF

벌크 마이크로 머쉬닝에 의한 다결정 실리콘 압력센서 제작 관한 연구 (A Study on Fabrication of Piezorresistive Pressure Sensor)

  • 임재홍;박용욱;윤석진;정형진;윤영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.677-680
    • /
    • 1999
  • Rapid developing automation technology enhances the need of sensors. Among many materials, silicon has the advantages of electrical and mechanical property, Single-crystalline silicon has different piezoresistivity on 야fferent directions and a current leakage at elevated temperature, but poly-crystalline silicon has the possibility of controling resistivity using dopping ions, and operation at high temperature, which is grown on insulating layers. Each wafer has slightly different thicknesses that make difficult to obtain the precisely same thickness of a diaphragm. This paper deals with the fabrication process to make poly-crystalline silicon based pressure sensors which includes diaphragm thickness and wet-etching techniques for each layer. Diaphragms of the same thickness can be fabricated consisting of deposited layers by silicon bulk etching. HF etches silicon nitride, HNO$_3$+HF does poly -crystalline silicon at room temperature very fast. Whereas ethylenediamice based etchant is used to etch silicon at 11$0^{\circ}C$ slowly.

  • PDF