• Title/Summary/Keyword: Silicides

Search Result 128, Processing Time 0.03 seconds

IR Absorption Property in NaNo-thick Nickel Cobalt Composite Silicides (나노급 두께의 Ni50Co50 복합 실리사이드의 적외선 흡수 특성 연구)

  • Song, Oh Sung;Kim, Jong Ryul;Choi, Young Youn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.88-96
    • /
    • 2008
  • Thermal evaporated 10 nm-$Ni_{50}Co_{50}$/(70 nm-poly)Si films were deposited to examine the energy saving properties of silicides formed by rapid thermal annealing at temperature ranging from 500 to $1,100^{\circ}C$ for 40 seconds. Thermal evaporated 10 nm-Ni/(70 nm-poly)Si films were also deposited as a reference using the same method for depositing the 10 nm-$Ni_{50}Co_{50}$/(70 nm-poly)Si films. A four-point probe was used to examine the sheet resistance. Transmission electron microscopy (TEM) and X-ray diffraction XRD were used to determine cross sectional microstructure and phase changes, respectively. UV-VIS-NIR and FT-IR (Fourier transform infrared spectroscopy) were used to examine the near-infrared (NIR) and middle-infrared (MIR) absorbance. TEM analysis confirmed that the uniform nickel-cobalt composite silicide layers approximately 21 to 55 nm in thickness had formed on the single and polycrystalline silicon substrates as well as on the 25 to 100 nm thick nickel silicide layers. In particular, nickel-cobalt composite silicides showed a low sheet resistance, even after rapid annealing at $1,100^{\circ}C$. Nickel-cobalt composite silicide and nickel silicide films on the single silicon substrates showed similar absorbance in the near-IR region, while those on the polycrystalline silicon substrates showed excellent absorbance until the 1,750 nm region. Silicides on polycrystalline substrates showed high absorbance in the middle IR region. Nickel-cobalt composite silicides on the poly-Si substrates annealed at $1,000^{\circ}C$ superior IR absorption on both NIR and MIR region. These results suggest that the newly proposed $Ni_{50}Co_{50}$ composite silicides may be suitable for applications of IR absorption coatings.

Characterizatics of Composite Silicides from Co/Ni Structure (코발트/니켈 적층구조 박막으로부터 형성된 복합실리사이드)

  • Song Ohsung;Cheong Seonghwee;Kim Dugjoong;Choi Yongyun
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.769-774
    • /
    • 2004
  • 15 nm-Co/15 nm-Ni/P-Si(100)[Type I] and 15 nm-Ni/15 nm-Co/P-Si(100)(Type II) bilayer structures were annealed using a rapid thermal annealer for 40sec at $700/sim1100^{\circ}C$. The annealed bilayer structures developed into composite NiCo silicides and resulting changes in sheet resistance, composition and microstructure were investigated using Auger electron spectroscopy and transmission electron microscopy. Prepared NiCoSix films were further treated in a sequential annealing set up from $900\sim1100^{\circ}C$ with 30 minutes. The sheet resistances of NiCoSix from Type I maintained less than $7\;{\Omega}/sq$. even at the temperature of $1100{\circ}C$, while those of Type II showed about $5\;{\Omega}/sq$. with the thinner and more uniform thickness. With the additive post annealing, the sheet resistance for all the composite silicides remained small up to $900^{\circ}C$. The proposed NiCoSix films were superior over the conventional single-phased silicides and may be easily incorporated into the sub-0.1 ${\mu}m$ process.

Characterization of Composite Silicide Obtained from NiCo-Alloy Films (코발트/니켈 합금박막으로부터 형성된 복합실리사이드)

  • Song Ohsung;Cheong Seonghwee;Kim Dugjoong
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.846-850
    • /
    • 2004
  • NiCo silicide films have been fabricated from $300{\AA}-thick\;Ni_{1-x}Co_{x}(x=0.1\sim0.9)$ on Si-substrates by varying RTA(rapid thermal annealing) temperatures from $700^{\circ}C\;to\;1100^{\circ}C$ for 40 sec. Sheet resistance, cross-sectional microstructure, and chemical composition evolution were measured by a four point probe, a transmission electron microscope(TEM), and an Auger depth profilemeter, respectively. For silicides of the all composition and temperatures except for $80\%$ of the Ni composition, we observed small sheet resistance of sub- $7\;{\Omega}/sq.,$ which was stable even at $1100^{\circ}C$. We report that our newly proposed NiCo silicides may obtain sub 50 nm-thick films by tunning the nickel composition and silicidation temperature. New NiCo silicides from NiCo-alloys may be more appropriate for sub-0.1${\mu}m$ CMOS process, compared to conventional single phase or stacked composit silicides.

Effects of Dopants Introduced into the Poly-Si on the Formation of Ti-Silicides (Poly-Si에 첨가한 도펀트가 Titanium Silicides 형성에 미치는 영향 Ⅱ)

  • Ryu, Yeon-Soo;Choi, Jin-Seog;Paek, Su-Hyon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.2
    • /
    • pp.73-80
    • /
    • 1990
  • The formation of Ti-silicides with the type of substrate, the species and the concentration of dopant, and the annealing temperature was investigated with sheet resistance and thickness measurement, elemental depth profilling, and microstructure. It was directly affected by the type of substrate, the species and the concentration of dopant, and the annealing temperature. For the amorphous Si substrate, the smothness of $TiSi_2/Si$ interface was increased. Above concentr-ation of $1{\times}10^{16}ions/cm^2$, the rate of $TiSi_2/Si$ formation was decreased and the sheet resistance was increased. The initial profile of dopant according to the implantation energy was one of the factors influencing the out-diffusion of dopant. In $POCI_3$ process, this was less than in ion implantation process.

  • PDF

Microstructure Characterization for Nano-thick Ir-inserted Nickel Silicides (나노급 Ir 삽입 니켈실리사이드의 미세구조 분석)

  • Song, Oh-Sung;Yoon, Ki-Jeong;Lee, Tae-Hyun;Kim, Moon-Je
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.207-214
    • /
    • 2007
  • We fabricated thermally-evaporated 10 -Ni/(poly)Si and 10 -Ni/1 -Ir/(poly)Si structures to investigate the microstructure of nickel monosilicide at the elevated temperatures required for annealing. Silicides underwent rapid at the temperatures of 300-1200 for 40 seconds. Silicides suitable for the salicide process formed on top of both the single crystal silicon actives and the polycrystalline silicon gates. A four-point tester was used to investigate the sheet resistances. A transmission electron microscope(TEM) and an Auger depth profile scope were employed for the determination of vertical section structure and thickness. Nickel silicides with iridium on single crystal silicon actives and polycrystalline silicon gates shoed low resistance up to 1000 and 800, respectively, while the conventional nickle monosilicide showed low resistance below 700. Through TEM analysis, we confirmed that a uniform, 20 -thick silicide layer formed on the single-crystal silicon substrate for the Ir-inserted case while a non-uniform, agglomerated layer was observed for the conventional nickel silicide. On the polycrystalline silicon substrate, we confirmed that the conventional nickel silicide showed a unique silicon-silicide mixing at the high silicidation temperature of 1000. Auger depth profile analysis also supports the presence of thismixed microstructure. Our result implies that our newly proposed iridium-added NiSi process may widen the thermal process window for the salicide process and be suitable for nano-thick silicides.

Inhomogeneous Growth of PtSi Studied by Spatially Resolved Photoelectron Spectroscopy

  • Kumar, Yogesh;Lee, Kyoung-Jae;Yang, Mihyun;Ihm, Kyuwook;Hwang, C.C.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.149.1-149.1
    • /
    • 2013
  • Noble metal silicides are widely used in silicon based microelectronic and optoelectronic devices. Among them, as compared to other silicides, structural and electronic properties of platinum silicide (PtSi) are found to be less sensitive to change in its dimensions. PtSi is known to overcome the junction spiking problems of Al-Si contacts. Present study is regarding the spatial evolution of platinum silicide in Pt/SiOx/Si. Scanning photoelectron emission microscopy (SPEM) was used for this purpose. SPEM images were obtained for pristine samples and after an annealing at $500^{\circ}C$ for 1 hr. Core-level spectra were recorded at different points in SPEM images contrasted by the intensity of Pt 4f7/2. Both Pt 4f and Si 2p spectra reveal the formation of PtSi after annealing. However, in contrast to earlier reports, PtSi formation is found to be non-uniform confirmed by the SPEM images and from the core level spectra taken at different intensity points.

  • PDF

Stability of Co/Ni Silicide in Metal Contact Dry Etch (Co/Ni 복합실리사이드의 메탈 콘택 건식식각 안정성 연구)

  • Song Ohsung;Beom Sungjin;Kim Dugjoong
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.573-578
    • /
    • 2004
  • Newly developed silicide materials for ULSI should have the appropriate electrical property of low resistant as well as process compatibility in conventional CMOS process. We prepared $NiCoSi_x$ silicides from 15 nm-Co/15 nm-Ni/Si structure and performed contact dry etch process to confirm the dry etch stability and compatibility of $NiCoSi_x$ layers. We dry etched the photoresist/SiO/silicide/silicon patterns with $CF_4\;and\;CHF_3$ gases with varying powers from 100 to 200 W, and pressures from 45 to 65 mTorr, respectively. Polysilicon and silicon active layers without silicide were etched $0\sim316{\AA}$ during over etch time of 3min, while silicon layers with proposed $NiCoSi_x$ silicide were not etched and showed stable surfaces. Our result implies that new $NiCoSi_x$ silicides may replace the conventional silicides due to contact etch process compatibility.

Property and Microstructure Evolution of Nickel Silicides for Poly-silicon Gates (게이트를 상정한 니켈 실리사이드 박막의 물성과 미세구조 변화)

  • Jung Youngsoon;Song Ohsung;Kim Sangyoeb;Choi Yongyun;Kim Chongjun
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.301-305
    • /
    • 2005
  • We fabricated nickel silicide layers on whole non-patterned wafers from $p-Si(100)SiO_2(200nm)$/poly-Si(70 nm)mn(40 nm) structure by 40 sec rapid thermal annealing of $500\~900^{\circ}C$. The sheet resistance, cross-sectional microstructure, surface roughness, and phase analysis were investigated by a four point probe, a field emission scanning electron microscope, a scanning probe microscope, and an X-ray diffractometer, respectively. Sheet resistance was as small as $7\Omega/sq$. even at the elevated temperature of $900^{\circ}C$. The silicide thickness and surface roughness increased as silicidation temperature increased. We confirmed the nickel silicides iron thin nickel/poly-silicon structures would be a mixture of NiSi and $NiSi_2$ even at the $NiSi_2$ stable temperature region.

Synthesis of Titanium Silicides by Mechanical Alloying (기계적합금화에 의한 Ti Silicide 화합물의 합성)

  • 변창섭;이상호;김동관;이진형
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.250-257
    • /
    • 1998
  • The synthesis of titanium silicides ($Ti_3Si$, $TiSi_2$, $Ti_5Si_4$, $Ti_5Si_3$ and TiSi) by mechanical alloying has been investigated. Rapid, self-propagating high-temperature synthesis (SHS) reactions were observed to produce the last three phases during room-temperature high-energy ball milling of elemental powders. Such reactions appeared to be ignited by mechanical impact in an intimate, fine powder mixture formed after a critical milling period. During the high-energy ball milling, the repeated impact at contact points leads to a local concentration of energy which may ignite a self-propagating reaction. From in-situ thermal analysis, each critical milling period for the formation of $Ti_5Si_4$, $Ti_5Si_3$ and TiSi was observed to be 22, 35.5 and 53.5 min, respectively. $Ti_3Si$ and $TiSi_2$, however, have not been produced even till the milling period of 360 min due to lack of the homogeneity of the powder mixtures. The formation of titanium silicides by mechanical alloying and the relevant reaction rates appeared to depend upon the critical milling period, the homogeneity of the powder mixtures, and the heat of formation of the products involved.

  • PDF

Characteristics and Microstructure of Co/Ni Composite Silicides on Polysilicon Substrates with Annealing Temperature (폴리실리콘 기판 위에 형성된 코발트 니켈 복합실리사이드 박막의 열처리 온도에 따른 물성과 미세구조변화)

  • Kim, Sang-Yeob;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.564-570
    • /
    • 2006
  • Silicides have been required to be below 40 nm-thick and to have low contact resistance without agglomeration at high silicidation temperature. We fabricated composite silicide layers on the wafers from Ni(20 nm)/Co(20 nm)/poly-Si(70 nm) structure by rapid thermal annealing of $700{\sim}1100^{\circ}C$ for 40 seconds. The sheet resistance, surface composition, cross-sectional microstructure, and surface roughness were investigated by a four point probe, a X-ray diffractometer, an Auger electron spectroscopy, a field emission scanning electron microscope, and a scanning probe microscope, respectively. The sheet resistance increased abruptly while thickness decreased as silicidation temperature increased. We propose that the fast metal diffusion along the silicon grain boundary lead to the poly silicon mixing and inversion. Our results imply that we may consider the serious thermal instability in designing and process for the sub-0.1 um CMOS devices.