• Title/Summary/Keyword: Silica-alumina

검색결과 265건 처리시간 0.026초

분자체 5A를 이용한 n-헥산의 분리와 HPLC급으로의 정제에 관한 연구 (A Study on the Separation of n-Hexane by Molecular Sieve 5A and the Purification for HPLC use)

  • 최범석;김영만;김선태
    • 분석과학
    • /
    • 제6권1호
    • /
    • pp.21-27
    • /
    • 1993
  • 54% 순도의 공업용 n-헥산을 HPLC급으로 분리, 정제하였다. 분별증류법으로 분리하기 어려운 methylcyclopentane, 2-methylpentane, 그리고 3-methylpentane 등은 molecular aieve 5A를 이용한 액체-고체 크로마토그래피법으로 분리하였다. HPLC 용매로서 엄격히 규제받는 UV와 형광불순물은 알루미나와 실리카겔을 이용한 흡착법으로 정제하였다. 이와 같은 방법으로 n-헥산을 정제함으로써 수분, 색도(APHA), 산도, 증발잔류물, 황 및 thiophene 등의 불순물 항목을 모두 HPLC급의 규격까지 낮출 수 있었다.

  • PDF

Strength and Reliability of Porous Ceramics Measured by Sphere Indentation on Bilayer Structure

  • Ha, Jang-Hoon;Kim, Jong-Ho;Kim, Do-Kyung
    • 한국세라믹학회지
    • /
    • 제41권7호
    • /
    • pp.503-507
    • /
    • 2004
  • The importance of porous ceramics has been increasingly recognized and adequate strength of porous ceramics is now required for structural applications. Porosities of porous ceramics act as flaws in inner volume and outer surface which result in severe strength degradation. The effect of pore structure, however, on strength and reliability of porous ceramics has not been clearly understood. We investigate the relationship between pore structure and mechanical properties using a sphere indentation on bilayer structure, porous ceramic top layer with soft polymer substrate. Porous alumina and silica were prepared to characterize the isolated pore structure and interconnected pore structure, respectively. The porous ceramic with 1mm thickness were bonded to soft polycarbonate substrate and then fracture strengths were estimated from critical loads for radial cracking of porous ceramics during sphere indentation from top surface. This simple and reproducible technique provides Weibull modulus of strength of porous ceramics with different pore structure. It shows that the porous ceramics with isolated pore structure have higher strength and higher Weibull modulus as well, than those with interconnected pore structure even with the same porosity.

경량기포콘크리트(ALC) 패널을 건축물 외장 커튼월에 적용을 위한 도료의 기초적 연구 (Applications and Analysis of Exterior Paints for the Curtain Wall Panel System based on the Autoclaved Lightweight Concrete(ALC))

  • 이용수;라현주
    • 한국디지털건축인테리어학회논문집
    • /
    • 제12권3호
    • /
    • pp.59-66
    • /
    • 2012
  • Autoclaved Lightweight Concrete(ALC) features such as a high performance insulation, the fire resistance, the advantage of easy handing construction, and lightweight panels applied the curtain wall system. ALC materials are certified as non-toxic environmental and eco-friendly productions. But ALC external panels mixed with blast furnace slag pounder and silica fume have to be coated with a stucco compound or plaster because of resisting the ambient environment. This study is that mixing tests to evaluate a performance analysis of exterior paints to be make-up pigments(organic or inorganic) coated with panel surface. Testing compared by KS F 2476; flow test, KS F 2426; compression strength test, KS F 2762; bond strength test. In results, the case of the inorganic binder, ratio of alumina cement : anhydrite is 90:10 to 80:20 at the highest level of intensity. In the case of the organic binder, adhesive strength rating at surface of ALC, the pullout strength is below 0.5 $N/mm^2$ but the normal concrete is over 2.0$N/mm^2$. A contents ratio of EVA resin is more than 3% and then bond strength is effectively.

지역별 황토의 화학적 특성 및 강도발현에 관한 연구 (A Study on the Chemical Properties and Strength Development of Regional Hwangto)

  • 황혜주;김정규;양준혁
    • KIEAE Journal
    • /
    • 제6권2호
    • /
    • pp.11-18
    • /
    • 2006
  • In this research, Conducting an engineering properties experiment, this study examined basic properties of regional Hwangto. The results of experiments are as followings. 1) This study confirmed that a result of examining lime order for Hwangto and comparison of stimulants, this study confirmed that 28 day's strength promotion is found in case of calcium hydroxide(Ca(OH)2) and calcium chloride(CaCl2) stimulant. Finally, it is known the fact that lime highly improves the weak strength of Hwangtoh. 2) As XRD analysis for proving the strength manifestation principle of Hwangto by regions, CSH figure and CASH figure appeared in each regional Hwangto in all the strength areas. This result could be appeared through hydraulicity from reaction of alkali stimulant and water, and pozzolan reaction(CSH figure) and $Str{\ddot{a}}tlingite$ reaction(CASH figure) by silica (SiO2) ingredient and calcium hydroxide (Ca(OH)2) among ingredients of clay, and alumina(Al2O3). 3) In result of strength analysis, It is knowned that the Gyeongsangdo Hwangto is stronger than the Jeollado Hwangto in reactivity.

Toxicity evaluation based on particle size, contact angle and zeta potential of SiO2 and Al2O3 on the growth of green algae

  • Karunakaran, Gopalu;Suriyaprabha, Rangaraj;Rajendran, Venkatachalam;Kannan, Narayanasamy
    • Advances in nano research
    • /
    • 제3권4호
    • /
    • pp.243-255
    • /
    • 2015
  • In this investigation, ecotoxicity of nano and micro metal oxides, namely silica ($SiO_2$) and alumina ($Al_2O_3$), on the growth of green algae (Porphyridium aerugineum Geitler) is discussed. Effects of nano and micro particles on the growth, chlorophyll content and protein content of algae are analysed using standard protocols. Results indicate that $SiO_2$ nano and micro $SiO_2$ particles are non-toxic to P. aerugineum Geitler up to a concentration of 1000 mg/L. In addition, $Al_2O_3$ microparticles are less toxic to P. aerugineum Geitler, whereas $Al_2O_3$ nanoparticles are found to be highly toxic at 1000 mg/L. Moreover, $Al_2O_3$ nanoparticles decrease the growth, chlorophyll content, and protein content of tested algae. In addition, zeta potential and contact angle are also important in enhancing the toxicity of metal oxide nanoparticles in aquatic environment. This study highlights a new insight into toxicity evaluation of nanoparticles on beneficial aquatic organisms such as algae.

부식방지제(BTA)가 첨가된 Cu CMP 슬러리에서의 연마거동과 (Polishing Behavior and Characterization of Cu Surface in Citric Acid based Slurry with Corrosion Inhibitor (BTA))

  • 김인권;강영재;홍의관;김태곤;박진구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.42-43
    • /
    • 2005
  • 본 연구에서는 Cu 슬러리에 부식방지제인 BTA를 첨가하여 슬러리내의 과수의 농도, pH 의 변화, 연마입자의 종류에 따라 연마거동에 미치는 영향과 각 chemical 변화에 따른 Cu surface의 변화를 살펴보았다. BTA (Benzotriazole, $C_6H_4C_3H$)를 첨가함으로써 본 연구에서 시행된 pH 와 과수의 변화에 상관없이 Cu-BTA film을 형성하여 Cu의 dissolution을 최대한 억제하는 것을 확인할 수 있었다. 또 그로인해 BTA를 첨가하지 않았을 때보다 얇은 passivation layer를 형성함을 알 수 있었고 contact angle도 더 높았다. 연마율의 경우에도 BTA가 첨가됨으로써 감소됨을 확인할 수 있었고 연마입자로 alumina particle을 사용한 경우에는 pH6, 과수 10vol%이상에서는 오히려 연마율이 증가하였다. fumed silica의 경우에는 hardness가 작아 mechanical적인 제거력이 낮아 BTA가 첨가되어도 연마율에는 큰 영향이 없었다.

  • PDF

무기계 표면침투제 용액으로 함침한 콘크리트의 특성 연구 (A Study on Characteristics of Concrete Impregnated with the Inorganic Surface Penetration Agents)

  • 배주성;김혁중;박국준;한종원
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권1호
    • /
    • pp.71-77
    • /
    • 2010
  • 콘크리트 구조물은 여러 가지 열화현상으로 내구성 및 건전성이 크게 저하되므로, 열화현상을 억제하는 것이 중요하다. 본 연구에서는 콘크리트의 열화현상을 억제하여 성능을 개선 시킬 수 있는 경제적이고 효율적인 표면침투제의 사용방법을 도출하기 위하여 표면침투제의 종류, 농도, 함침시간을 달리한 시험체의 점도, 표면장력, 압축강도, 내약품성, 내흡수량 및 염소이온 침투저항성 시험결과를 고찰하였다. 그 결과, 콜로이달 실리카 용액 및 소듐 알루미나 실리케이트 용액의 적정 희석 농도와 함침시간은 각각 15%, 5분 및 17%, 10초로 나타났다.

우리나라 하수 및 폐수 처리 슬러지의 다환방향족탄화수소의 함량 (Contemporary organic contamination levels in digested sewage sludge from treatment plants in Korea: (2) Non-alkylated Polycyclic Aromatic Hydrocarbons)

  • 이강영;정창수;김영일;이현경;홍기훈
    • 한국환경과학회지
    • /
    • 제14권4호
    • /
    • pp.413-425
    • /
    • 2005
  • The 16 priority PAHs (Polycyclic Aromatic Hydrocarbons) designated by US Environmental Protection Agency were analyzed for some digested sludges from wastewater treatment plants in Korea. PAHs are an important group of organic contaminants present in sewage sludge due to their persistence and toxic potential. PAHs were extracted from freeze-dried sludges using a methylene chloride-methanol (2:1) mixture in a soxhlet extractor. The extracts were cleaned-up by silica gel/alumina combination column and subsequently fed into gas chromatograph/mass spectrometer (GC/MS) for determining PAH contents. The sum of the 16 PAHs in the sewage sludge varied from 534.8 to $5754.5 {\cal}ug/{\cal}kg$, dry wt.. In the sewage sludge, phenanthrene appears as the most abundant PAHs, followed by naphthalene, pyrene, fluoranthene. Source of the investigated sewage sludges relatively predominated pyrogenic. PAHs levels of sewage sludges in Korea appeared to be lower than those in other countries.

Flexible poly(vinyl alcohol)-ceramic composite separators for supercapacitor applications

  • Bon, Chris Yeajoon;Mohammed, Latifatu;Kim, Sangjun;Manasi, Mwemezi;Isheunesu, Phiri;Lee, Kwang Se;Ko, Jang Myoun
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.173-179
    • /
    • 2018
  • Electrochemical characterization was conducted on poly(vinyl alcohol) (PVA)-ceramic composite (PVA-CC) separators for supercapacitor applications. The PVA-CC separators were fabricated by mixing various ceramic particles including aluminum oxide ($Al_2O_3$), silicon dioxide ($SiO_2$), and titanium dioxide ($TiO_2$) into a PVA aqueous solution. These ceramic particles help to create amorphous regions in the crystalline structure of the polymer matrix to increase the ionic conductivity of PVA. Supercapacitors were assembled using PVA-CC separators with symmetric activated carbon electrodes and electrochemical characterization showed enhanced specific capacitance, rate capability, cycle life, and ionic conductivity. Supercapacitors using the $PVA-TiO_2$ composite separator showed particularly good electrochemical performance with a 14.4% specific capacitance increase over supercapacitors using the bare PVA separator after 1000 cycles. With regards to safety, PVA becomes plasticized when immersed in 6 M KOH aqueous solution, thus there was no appreciable loss in tear resistance when the ceramic particles were added to PVA. Thus, the enhanced electrochemical properties can be attained without reduction in safety making the addition of ceramic nanoparticles to PVA separators a cost-effective strategy for increasing the ionic conductivity of separator materials for supercapacitor applications.

A critical review of slag and fly-ash based geopolymer concrete

  • Akcaoglu, Tulin;Cubukcuoglu, Beste;Awad, Ashraf
    • Computers and Concrete
    • /
    • 제24권5호
    • /
    • pp.453-458
    • /
    • 2019
  • Today, concrete remains the most important, durable, and reliable material that has been used in the construction sector, making it the most commonly used material after water. However, cement continues to exert many negative effects on the environment, including the production of carbon dioxide (CO2), which pollutes the atmosphere. Cement production is costly, and it also consumes energy and natural non- renewable resources, which are critical for sustainability. These factors represent the motivation for researchers to examine the various alternatives that can reduce the effects on the environment, natural resources, and energy consumption and enhance the mechanical properties of concrete. Geopolymer is one alternative that has been investigated; this can be produced using aluminosilicate materials such as low calcium (class F) FA, Ultra-Fine GGBS, and high calcium FA (class C, which are available worldwide as industrial, agricultural byproducts.). It has a high percentage of silica and alumina, which react with alkaline solution (activators). Aluminosilicate gel, which forms as a result of this reaction, is an effective binding material for the concrete. This paper presents an up-to-date review regarding the important engineering properties of geopolymer formed by FA and slag binders; the findings demonstrate that this type of geopolymer could be an adequate alternative to ordinary Portland cement (OPC). Due to the significant positive mechanical properties of slag-FA geopolymer cements and their positive effects on the environment, it represents a material that could potentially be used in the construction industry.