• Title/Summary/Keyword: Silica-alumina

Search Result 265, Processing Time 0.023 seconds

Synthesis and Properties of Mullite from Kaolin by Boehmite Gel Coating (Boehmite Gel Coating법에 의한 Kaolin으로부터 Mullite의 합성 및 그 특성)

  • 임병수;김인섭
    • Korean Journal of Crystallography
    • /
    • v.8 no.2
    • /
    • pp.89-96
    • /
    • 1997
  • In order to apply synthesis technique of the high purity ceramic powder to the traditional ceramic powder, mullite powder which is widly used for refractory materials was synthesized. Boehmite and Hadong kaolin with high alumina content were used as starting materials and gel coating method was tried to produce the mullite powder. As a result, the mullite powder of high quality was successfully obtained at 1350℃. The unreacted silica and cornudum were not observed in the synthesized mullite powder, mullite content was more than 80% when the starting materials were sintered at 1700℃. Their properties showed bulk specific gravity of 2.56, water absorption of 1.9%, and 3-point flexual strength of 169 MPa. It is thought that that their good properties are applicable to refractory materials of high quality.

  • PDF

An Optimization of Tungsten Plug Chemical Mechanical Polishing(CMP) using the Different Sets of Slurry and Pad (슬러리와 패드변화에 따른 텅스텐 플러그 CMP 공정의 최적화)

  • 김상용;서용진;이우선;이강현;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.568-574
    • /
    • 2000
  • We have been optimized tungsten(W) plug CMP(chemical mechanical polishing) characteristics using two different kinds of component of slurry and two different kinds of pad which have different hardness. The comparison of oxide film roughness on around W plug after polishing has been carried out. And W plug recess for consumable sets and dishing effect at dense area according to the rate of over-polishing has been investigated. Also the analysis of residue on surface after cleaning have been performed. As a experimental result we have concluded that the consumable set of slurry A and hard pad was good for W plug CMP process. After decreasing the rate of chemical reaction of silica slurry and adding two step buffering we could reduce the expanding of W plug void however we are still recognizing to need a more development for those kinds of CMP consumables.

  • PDF

Application of SiO2 nanocomposite ferroelectric material in preparation of trampoline net for physical exercise

  • Zhanguo Su;Junyan Meng;Yiping Su
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.355-362
    • /
    • 2023
  • Physical exercise, especially intense exercise and high intensity interval training (HIIT) by trampoline, can lead to muscle injuries. These effects can be reduced with intelligent products made of nanocomposite materials. Most of these nanocomposites are polymers reinforced with silicon dioxide, alumina, and titanium dioxide nanoparticles. This study presents a polymer nanocomposite reinforced with silica. As a result of the rapid reaction between tetraethyl orthosilicate and ammonia in the presence of citric acid and other agents, silica nanostructures were synthesized. By substituting bis (4-amino phenoxy) phenyl-triptycene in N, N-dimethylformamide with potassium carbonate, followed by catalytic reduction with hydrazine and Pd/C, the diamine monomer bis (4-amino phenoxy) phenyl-triptycene is prepared. We synthesized a new polyaromatic (imide) with triptycene unit by sol-gel method from aromatic diamines and dianhydride using pyridine as a condensation reagent in NMP. PI readily dissolves in solvents and forms robust and tough polymer films in situ. The FTIR and NMR techniques were used to determine the effects of SiO2 on the sol-gel process and the structure of the synthesized nanocomposites. By using a simultaneous thermal analysis (DTA-TG) method, the appropriate thermal operation temperature was also determined. Through SEM analysis, the structure, shape, size, and specific surface area of pores were determined. Analysis of XRD results is used to determine how SiO2 affects the crystallization of phases and the activation energy of crystallization.

Comparison of Adsorption Characteristics on Zeolite 13X and Silica-aluminar (제올라이트 13X와 실리카-알루미나의 흡착특성 비교)

  • Lee, Song-Woo;Na, Young-Soo;An, Chang-Doeuk;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.20 no.6
    • /
    • pp.729-736
    • /
    • 2011
  • This work is to compare the experiment results by a continuous fixed-bed adsorption of water vapor, acetone vapor, and toluene vapor on zeolite 13X (SAU) and silica-alumina (SAK). SAU and SAK have very different pore structure but similar composition as inorganic adsorbent. The relationship between the equilibrium adsorption capacity and specific pore size range were studied. Adsorption of water vapor was more suitable on SAU than SAK because SAU has relatively more developed pores around $5\;\AA$ than SAK in the pore range of $10\sim100\;\AA$. Adsorption of acetone vapor was more suitable on SAK than SAU because SAK has relatively more developed pores around $5\sim10\;\AA$ than SAK in the pore range of less than $10\;\AA$. Adsorption of toluene vapor was more suitable on SAK than SAU because SAK has relatively more developed pores in the pore range of $10\sim100\;\AA$ than SAK. Adsorption capacity of the adsorbent was closely related to the surface area generated in the specific pore size region. But it was difficult to distinguish the relationships between adsorption capacity and micro area, and the external surface area of adsorbent.

Gas Permeation and Steam Stability of Ga Salt Doped Silica Membrane by Chemical Vapor Deposition (CVD 법으로 제조한 실리카 막의 Ga 염 첨가에 따른 스팀안정성 및 기체투과특성)

  • Ryu, Seung Hee;Lee, Yong Taek
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.424-434
    • /
    • 2012
  • In this study, a ceramic membrane was prepared by CVD. Tube type alpha alumina support was used for substrate and added the Ga salt in intermediate layer. Synthesized method was counter diffusion CVD method at $650^{\circ}C$ with tetramethylorthosilane (TMOS). Gas permeation was measured at $600^{\circ}C$ using single-component $H_2$, $N_2$, $CO_2$ and $CH_4$. During the steam treatment, $H_2/N_2$ permselectivity of non-Ga silica membrane was decreased 926 to 829 at $600^{\circ}C$. On the other hand $H_2/N_2$ permselectivity of added Ga silica membrane was stable 910 to 904 at $600^{\circ}C$. These results show that the metal-doped membranes improved steam stability for gas separation.

Effect of Curvature Dependency of Surface Tension on the Result of Pore-Volume Distribution Analysis (동공부피 분포의 계산결과에 미치는 표면장력의 곡률 의존도 효과)

  • Cho Chang-Hyun;Ahn Woon-Sun;Chang Seihun
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.341-348
    • /
    • 1972
  • The significance of the curvature dependency correction of surface tension is studied in calculating the pore volume distribution of porous adsorbent from nitrogen adsorption isotherm. That is, Kelvin radii are calculated with curvature dependent surface tension values calculated by Chang et al, and then with these Kelvin radii, pore volume distributions of three porous adsorbents, silica alumina (steam deactivated), silica gel (Davidson 59), and silica gel (Mallinc-krodt Standard Luminescent), are calculated. The results are compared with those obtained by the previous method in which surface tension is taken as constant and also with the others. obtained by the modelless method proposed by Brunauer et al. The maximum point of the distribution curve shift to the larger pore radius, when the curvature dependency is considered. Furthermore, the relative pressure at which capillary condensation commences is by far the lower than that accepted previously. This effect becomes significant as the pore radius approaches to the micropore range.

  • PDF

THREE-BODY ABRASIVE WEAR IN A BALL-CRATERING TEST WITH LARGE ABRASIVE PARTICLES

  • Stachowiak, G.B.;Stachowiak, G.W.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.199-200
    • /
    • 2002
  • Three-body abrasive wear resistance of mild steel, low alloy steel (Bisalloy) and 27%Cr white cast iron was investigated using a ball-cratering test. Glass beads, silica sand, quartz and alumina abrasive particles with sizes larger than $100{\mu}m$ were used to make slurries. It was found that the wear rates of all three materials tested increased with time when angular abrasive particles were used and were rather constant when round particles were used. This increase in wear rates was mainly due to the gradual increase in ball surface roughness with testing time. Abrasive particles with higher angularity caused higher ball surface roughness. Mild steel and Bisalloy were more affected by this ball surface roughness changes than the hard white cast iron. Generally, three-body rolling wear dominated. The contribution of two-body grooving wear increased when the ball roughness was significant. More grooves were found when round particles were used or the size of the particles was decreased.

  • PDF

Strength development of ground perlite-based geopolymer mortars

  • Celikten, Serhat;Isikdag, Burak
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.227-234
    • /
    • 2020
  • Raw perlite is a volcanic alumino-silicate and is used as aggregate in the construction industry. The high silica and alumina contained in the raw perlite allows the production of geopolymer mortar with the help of alkaline solutions. In this study, different geopolymer mortars are obtained by mixing ground perlite (GP), sodium hydroxide (NaOH), water and CEN standard sand and the strength and microstructure of these mortars are investigated. Mortar specimens are placed in the oven 24 hours after casting and kept at different temperatures and times, then the specimens are cured under laboratory conditions until the day of strength tests. After curing, unit weight, ultrasound pulse velocity, flexural and compressive strengths are determined. Experimental results indicate that the mechanical properties of the mortars enhance with increasing oven-curing period and temperatures as well as increasing NaOH molarity. In addition, SEM/EDS and XRD analyses are performed on the mortar specimens and the results are interpreted.

Effects of ceramic fillers on fracture resistance of barrier ribs of PDP

  • Baek, Se-Kyung;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.552-554
    • /
    • 2004
  • Barrier ribs of plasma display panel (PDP) are glass matrix composite reinforced with alumina particles. Mechanical properties of the ribs are very crucial for the improvement in reliability of the panel as the ribs might fracture during transportation and service. In this study, therefore, the effects of filler type and content on the mechanical properties of the ribs were investigated. The fillers used include $Al_2O_3$, $TiO_2$, $ZrO_2$ and fused silica. The content of the filler was changed from 0 to 40 vol.%. The mechanical properties of the ribs measured were hardness, Young's modulus, fracture toughness, and 3-point bending modulus. The fracture toughness evaluated by micro-Vicker's indentation of the composites, in general, was measured to increase with the content of the filler until the sintered density does not decrease significantly. The improvement, however, was dependent on the type of filler employed.

  • PDF

A Study on the Reusability of Incinerated Paper Mill Sludge Ash as Cement Additive (시멘트 혼화재로서 제지슬러지 소각재의 재활용 특성)

  • 주소영;연익준;이민희;박준규;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.2
    • /
    • pp.34-41
    • /
    • 2003
  • The purpose of this study is to examine the effect of stabilization disposal and recycling on incinerated paper mill sludge ash as cement additives. It was investigated chemical(pH, ICP, TGA XRD) and physical(PDA, SEM) characteristics of the incineration ash. And the pozzolanic characteristics of incineration ash was applied to cement as additive to increase the compressive strength. The results were that the pH characteristic of incineration ash was strong alkalinity, the content of silica and alumina as a pozzolanic material was 50.97%, and the average particle size was $5.03{\mu}m$ respectively. When the ash contents as cement additive were varied in 0~15%(wt) of cement weight to explore the effect of the compressive strength on the solidified cement mortar, the proper amount of the incineration ash substituted was about 5~l0%(wt). Therefore we found that using the incineration ash as cement additive obtains the recycling of waste material, the stabilization disposal, the reduction of waste disposal expense, and the protection of environmental problem, too.