• Title/Summary/Keyword: Silica shell

Search Result 98, Processing Time 0.029 seconds

Gallotannins from Nut Shell Extractives of Camellia oleifera

  • HE, Yi-Chang;WU, Mei-Jie;LEI, Xiao-Lin;YANG, Jie-Fang;GAO, Wei;BAE, Young-Soo;KIM, Tae-Hee;CHOI, Sun-Eun;LI, Bao-Tong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.267-273
    • /
    • 2021
  • Camellia nut shell was collected, dried at room temperature and ground to get fine powder. The powder was extracted three times with 95% EtOH, combined, evaporated, and then freeze dried. The crude powder was dissolved in H2O and then sequentially fractionated with n-hexane, CH2Cl2, EtOAc and n-BuOH. A part of EtOAc fraction was chromatographed on a silica gel and on a Sephadex LH-20 columns using MeOH, aqueous MeOH, EtOAc-n-hexane and EtOH-n-hexane to isolate gallotannins. Three gallotannins, 1,2-di-O-galloyl-β-D-glucopyranoside (2), 1,2,6-tri-O-galloyl-β-D-glucopyranoside (3) and 1,2,3,6-tetra-O-galloyl-β-D-glucopyranoside (4), including gallic acid (1), were isolated and elucidated by NMR and Mass spectroscopies. Although nothing new, these gallotannins were first reported from the nut shell extractives of camellia tree (Camellia oleifera C. Abel). This study was to investigate the chemical constituents, especially hydrolysable tannins, of nut shell extractives of Camellia oleifera and to provide basic information for the future chemical utilization of this species.

Fabrication and Characterization of CdSe/ZnS-QDs Incorporated Microbeads for Ultra-sensitive Sensor Applications (양자점을 이용한 고감도 마이크로 비드의 제조 및 특성)

  • Lee, Dong-Sup;Lee, Jong-Chul;Lee, Jong-Heun;Koo, Eun-Hae
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.189-194
    • /
    • 2010
  • Compared with organic fluorophores, semiconductor quantum dots (QDs) have the better properties such as photostability, narrow emission spectra coupled to tunable photoluminescent emissions and exceptional resistance to both photo bleaching and chemical degradation. In this work, CdSe/ZnS QDs nanobeads were prepared by the incorporation of CdSe/ZnS QDs with mesoporous silica to use as the optical probe for detecting toxic and bio- materials with high sensitivity, CdSe/ZnS core/shell QDs were synthesized from the precursors such as CdO and zinc stearate with the lower toxicity than pyrotic precursors. The QD-nanobeads were characterized by transmission electron microscopy, FL microscopy, UV-Vis and PL spectroscopy, respectively.

Effects of Particle Size of Dry Water on Fire Extinguishing Performance (드라이워터의 입자크기가 소화성능에 미치는 영향)

  • Lee, Eungwoo;Choi, Youngbo
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.3
    • /
    • pp.28-35
    • /
    • 2019
  • Dry water is a core-shell structured powder which comprises a very fine water core covered with hydrophobic silica particles. Recently, the dry water has attracted attention as a new type of fire extinguishing agents. However, characteristics of the dry water as a fire extinguishing agent have not been revealed until now. To our best knowledge, this is the first work to uncover effects of particle size of the dry water on the fire extinguishing performance. Pristine dry water, which has heterogeneous particle size distribution, was carefully separated by sieving method into three fractions which were a small size (ca. $110{\mu}m$) fraction, a medium size (ca. $220{\mu}m$) fraction and a large size (ca. $400{\mu}m$) fraction. Microscopic observations confirmed the effective separation of dry water's particle size. In extinguishing tests of wood cribs fire, the medium size dry water showed most excellent fire extinguishing performance, as compared to other dry waters having small (ca. $110{\mu}m$) and large (ca. $400{\mu}m$) particle size. The good performance of the medium size (ca. $220{\mu}m$) dry water may be attributed to the balance between cooling effect of the water core and smothering effect of the silica particles. It is also revealed that small size dry water has poor flowability than large size dry water.

Synthesis and Characterization of Brilliant Yellow Color Pigments using α-FeOOH Nanorods (α-FeOOH 나노로드를 이용한 선명한 황색 안료 합성 연구)

  • Yun, JiYeon;Yu, Ri;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.453-457
    • /
    • 2016
  • In this work, we synthesize brilliant yellow color ${\alpha}$-FeOOH by controlling the rod length and core-shell structure. The characteristics of ${\alpha}$-FeOOH nanorods are controlled by the reaction conditions. In particular, the length of the ${\alpha}$-FeOOH rods depends on the concentration of the raw materials, such as the alkali solution. The length of the nanorods is adjusted from 68 nm to 1435 nm. Their yellowness gradually increases, with the highest $b^*$ value of 57 based on the International Commission on Illumination (CIE) Lab system, by controlling the nanorod length. A high quality yellow color is obtained after formation of a silica coating on the ${\alpha}$-FeOOH structure. The morphology and the coloration of the nal products are investigated in detail by X-ray diffraction, scanning electron microscopy, UV-vis spectroscopy, and the CIE Lab color parameter measurements.

Synthesis, Characterizations, and Applications of Metal-Ions Incorporated High Quality MCM-41 Catalysts (고품질 금속 이온 첨가 MCM-41 분자체 촉매의 제법, 특성화 및 응용 반응)

  • Lim, Steven S.;Haller, Gary L.
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.443-454
    • /
    • 2013
  • Various metal ions (transition and base metals) incorporated MCM-41 catalysts can be synthesized using colloidal and soluble silica with non-sodium involved process. Transition metal ion-typically $V^{5+}$, $Co^{2+}$, and $Ni^{2+}$-incorporated MCM-41 catalysts were synthesized by isomorphous substitution of Si ions in the framework. Each incorporated metal ion created a single species in the silica framework, single-site solid catalyst, showing a substantial stability in reduction and catalytic activity. Radius of pore curvature effect was investigated with Co-MCM-41 by temperature programmed reduction (TPR). The size of metallic Co clusters, sub-nanometer, could be controlled by a proper reduction treatment of Co-MCM-41 having different pore size and the initial pH adjustment of the Co-MCM-41 synthesis solution. These small metallic clusters showed a high stability under a harsh reaction condition without serious migration, resulting from a direct anchoring of small metallic clusters to the partially or unreduced metal ions on the surface. After a complete reduction, partial occlusion of the metallic cluster surface by amorphous silica stabilized the particles against aggregations. As a probe reaction of particle size sensitivity, carbon single wall nanotubes (SWNT) were synthesized using Co-MCM-41. A metallic cluster stability test was performed by CO methanation using Co- and Ni-MCM-41. Methanol and methane partial oxidations were carried out with V-MCM-41, and the radius of pore curvature effect on the catalytic activity was investigated.

Preparation of silica-coated gadolinium compound particle colloid solution and its application in imaging

  • Kobayashi, Yoshio;Morimoto, Hikaru;Nakagawa, Tomohiko;Gonda, Kohsuke;Ohuchi, Noriaki
    • Advances in nano research
    • /
    • v.1 no.3
    • /
    • pp.159-169
    • /
    • 2013
  • A preparation method for gadolinium compound (GdC) nanoparticles coated with silica ($GdC/SiO_2$) is proposed. GdC nanoparticles were prepared with a homogeneous precipitation method at $80^{\circ}C$ using $1.0{\times}10^{-3}$ M $Gd(NO_3)_3$, 0.5 M urea and $0-3.0{\times}10^{-4}$ M ethylenediarinnetetraacetic acid disodium salt dihydrate (ETDA) in water. As a result of preparation at various EDTA concentrations, GdC nanoparticles with a size as small as $40.5{\pm}6.2$ nm, which were colloidally stable, were prepared at an EDTA concentration of $2.0{\times}10^{-4}$ M. Silica-coating of the GdC nanoparticles was performed by a St$\ddot{o}$ber method at $35^{\circ}C$ using $1.0-10.0{\times}10^{-3}$ M tetraethylorthosilicate (TEOS), 11 M $H_2O$ and $1.5{\times}10^{-3}$ M NaOH in ethanol in the presence of $1.0{\times}10^{-3}$ M GdC nanoparticles. Performance of preparation at various TEOS concentrations resulted in production of $GdC/SiO_2$ particles with an average size of $106.1{\pm}11.2$ nm at a TEOS concentration of $5.0{\times}10^{-3}$ M. The gadolinium (Gd) concentration of $1.0{\times}10^{-3}$ M in the as-prepared $GdC/SiO_2$ particle colloid solution was increased up to a Gd concentration of 0.2 M by concentrating with centrifugation. The core-shell structure of $GdC/SiO_2$ particles was undamaged, and the colloid solution was still colloidally stable, even after the concentrating process. The concentrated $GdC/SiO_2$ colloid solution showed images of X-ray and magnetic resonance with contrast as high as commercial Gd complex contrast agents.

Synthesis of LiDAR-reflective Hollow-structured Black Materials and Recycling of Their Etched Waste for Semiconductor Epoxy Molding Compound (라이다 반사형 중공구조 검은색 물질의 개발 및 코어 에칭 폐액 재활용을 통한 반도체용 에폭시 몰딩 컴파운드 응용)

  • Ha-Yeong Kim;Min Jeong Kim;Jiwon Kim;Suk Jekal;Seon-Young Park;Jong Moon Jung;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.5-14
    • /
    • 2023
  • In this study, LiDAR-reflective black hollow-structured silica/titania(B-HST) materials are successfully synthesized by employing the NaBH4 reduction and etching method on silica/titania core/shell(STCS) materials, which also effectively enhance near-infrared(NIR) reflectance. Moreover, core-etched supernatant solutions are collected and recycled for the synthesis of extracted silica(e-SiO2) process, which successfully applies as filler materials for semiconductor epoxy molding compound(EMC). In detail, B-HST materials, fabricated by the sequential experimental steps of sol-gel, reduction, and sonication-mediated etching method, manifest blackness(L*) of 13.2 similar to black paint and excellent NIR reflectance(31.1%). Consequently, B-HST materials are successfully prepared as LiDAR-reflective black materials. Additionally, core-etched supernatant solution with silanol precursors are employed for synthesis of homogeneous silica filler materials via sol-gel method. As-synthesized silica fillers are incorporated with epoxy resin and carbon black for the preparation of semiconductor EMC. Experimentally synthesized EMC exhibits comparable mechanical-chemical properties to commercial EMC. Conclusively, this study successfully proposes designing procedure and practical experimental method for simultaneously synthesizing the NIR-reflective black materials for self-driving vehicles and EMC materials for semiconductors, which are materials suitable for the industrial 4.0 era, and presented their applicability in future industries.

Preparation of Monodispersed Silica-Rubitherm®Microparticles Using Membrane Emulsification and Their Latent Heat Properties (막유화법을 이용한 단분산성 실리카-루비덤® 마이크로 입자의 제조 및 잠열 특성)

  • Kim, Soo-Yeon;Jung, Yeon-Seok;Lee, Sun-Ho;You, Jin-Oh;Youm, Kyung-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.215-225
    • /
    • 2015
  • Recently, the importance of energy saving and alternative energy is significantly increasing due to energy depletion and the phase change material (PCM) research for saving energy is also actively investigating. In this research, the membrane emulsification using SPG membrane was used to make various microencapsulated phase change material (MPCM) particles which were comprised of $Rubitherms^{(R)}$ (RT-21 and RT-24) core and silica coating. We investigated the pressure of the dispersion phase, the concentration of surfactant, and the ratio of $Rubitherm^{(R)}$ and silica to prepare various MPCM particles. The DSC and TGA were used to examine the heat stability and latent heat properties. Also, PSA, SEM, and optical microscopy were used to confirm the size of $Rubitherm^{(R)}$ particles and the thickness of silica shell. The average of particle size was $7-8{\mu}m$. And, FT-IR was also used to enforce the qualitative analysis. Finally, the MPCM particles obtained from membrane emulsification showed monodispersed size distribution and the heat stability and latent heat were kept up to 80% compared to pure $Rubitherm^{(R)}$. So, it can be effectively used for wallpaper, buildings and interior products for energy saving as PCMs.

Avoidance of Internal Resonances in Hemispherical Resonator Assemblies from Fused Quartz Connected by Indium Solder

  • Sarapuloff, Sergii A.;Rhee, Huinam;Park, Sang-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.835-841
    • /
    • 2013
  • Modern solid-state gyroscopes (HRG) with hemispherical resonators from high-purity quartz glass and special surface superfinishing and ultrathin gold coating become the best instruments for precise-grade inertial reference units (IRU) targeting long-term space missions. Designing of these sensors could be a notable contribution into development of Korea as a space nation. In participial, 40mm diameter thin-shell resonator from high-purity fused quartz, fabricated as a single-piece with its supporting stem has been designed, machined, etched, tuned, tested, and delivered by STM Co. (ATS of Ukraine) several years ago; an extremely-high Q-factor (upto 10~20 millions) has been shown. Understanding of the best way how to match such a unique sensor with inner glass assembly of the gyro means how to use the high potential in a maximal extent; and this has become the urgent task. Inner quartz glass assembly has a very thin indium (In) layer soldered the resonator and its silica base (case), but effects of internal resonances between operational modal pair of the shell-cup and its side (parasitic) modes can notable degrade the potential of the sensor as a whole, instead of so low level of resonator's intrinsic losses. Unfortunately, there are special combinations of dimensions of the parts (so-called, "resonant sizes"), when intensive losses of energy occurs. The authors proposed to use the length of stem's fixture as an additional design parameter to avoid such cases. So-called, a cyclic scheme of finite element method (FEM) and ANSYS software were employed to estimate different combinations of gyro assembly parameters. This variant has no mismatches of numerical origin due to FEM's discrete mesh. The optimum length and dangerous "resonant lengths" have been found. The special attention has been paid to analyses of 3D effects in a cup-stem transient zone, including determination of a difference between the positions of geometrical Pole of the resonant hemisphere and of its "dynamical Pole", i.e., its real zone of oscillation node. Boundary effects between the shell (cup) and 3D short "beams" (inner and outer stems) have been ranged. The results of the numerical experiments have been compared with the classic model of a quasi-hemispherical shell band with inextensional midsurface, and the solution using Rayleigh's functions of the $1^{st}$ and $2^{nd}$ kinds. To guarantee the truth of the recommended sizes to a designer of the real device, the analytical and FEM results have been compared with experimental data for a party of real resonators. The consistency of the results obtained by different means has been shown with errors less than 5%. The results notably differ from the data published earlier by different researchers.

  • PDF

Fabrication of Hollow Metal Microcapsules with Mesoporous Shell Structure: Application as Efficient Catalysts Recyclable by Simple Magnetic Separation

  • Jang, Da-Young;Jang, Hyung-Gyu;Kim, Gye-Ryung;Kim, Geon-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3274-3280
    • /
    • 2011
  • Monodispersed porous NiO and $Co_3O_4$ microcapsules with a hollow core were synthesized using SBA-16 silica sol and PS as a hard template. The porous hollow microcapsules were characterized by XRD, TEM and $N_2$ adsorption/desorption analysis. After $H_2$ reduction of metal oxide microspheres, they were conducted as an active catalyst in the reduction of chiral butylronitrile and cyanobenzene. The mesoporous metals having a hollow structure showed a higher activity than a nonporous metal powder and an impregnated metal on the carbon support.