• Title/Summary/Keyword: Silica film

Search Result 287, Processing Time 0.028 seconds

Effects of Temperature on the Tribological Characteristics of Thermoplastic Polymer Film (열가소성 폴리머 필름의 트라이볼로지 특성에 대한 온도의 영향)

  • Kim, Kwang-Seop;Heo, Jung-Chul;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.207-216
    • /
    • 2009
  • Friction tests were carried out in order to investigate the effects of temperature on the friction and wear behaviors between a PMMA film and a fused silica lens using a microtribometer. The friction forces on the PMMA film were measured under atmospheric condition as the temperature of the film was increased from 300 K to 443 K. The contact area between the film and the lens was observed. The tribological characteristics of the film were significantly changed as the temperature increased. The changes were discussed with the change of the film state from glassy to viscous flow. In addition, the results showed that the friction behavior can be varied with the thermal history of the PMMA film. Residual solvent in the PMMA film could emerge to the PMMA surface due to an additional heating and the solvent on the film surface decreased the friction force.

CMP Properties of Oxide Film with Various Pad Conditioning Temperatures (CMP 패드 컨디셔닝 온도에 따른 산화막의 연마특성)

  • Choi, Gwon-Woo;Kim, Nam-Hoon;Seo, Yong-Jin;Lee, Woo-Sun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.297-302
    • /
    • 2005
  • Chemical mechanical polishing(CMP) performances can be optimized by several process parameters such as equipment and consumables (pad, backing film and slurry). Pad properties are important in determining removal rate and planarization ability of a CMP process. It is investigated the performance of oxide CMP process using commercial silica slurry after the pad conditioning temperature was varied. Conditioning process with the high temperature made the slurry be unrestricted to flow and be hold, which made the removal rate of oxide film increase. The pad became softer and flexible as the conditioning temperature increases. Then the softer pad provided the better surface planarity of oxide film without defect.

Polishing Mechanism of TEOS-CMP with High-temperature Slurry by Surface Analysis

  • Kim, Nam-Hoon;Seo, Yong-Jin;Ko, Pil-Ju;Lee, Woo-Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.164-168
    • /
    • 2005
  • Effects of high-temperature slurry were investigated on the chemical mechanical polishing (CMP) performance of tetra-ethyl ortho-silicate (TEOS) film with silica and ceria slurries by the surface analysis of X-ray photoelectron spectroscopy (XPS). The pH showed a slight tendency to decrease with increasing slurry temperature, which means that the hydroxyl $(OH^-)$ groups increased in slurry as the slurry temperature increased and then they diffused into the TEOS film. The surface of TEOS film became hydro-carbonated by the diffused hydroxyl groups. The hydro-carbonated surface of TEOS film could be removed more easily. Consequently, the removal rate of TEOS film improved dramatically with increasing slurry temperature.

Preparation of Glass Thin Film onto Plastic Surface by Sol-Gel Process (Sol-Gel 공정으로 Plastic표면에 Glass박막 제조에 관한 연구)

  • 양천회
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.85-91
    • /
    • 1998
  • Sol-gel derived silica films were prepared by dip-coating onto polymethylmethacylate with Tetraethoxysilane(TEOS) as starting materials. Film properties such as viscosity and thickness were investigated as a function of dip speed, waterprecursor ratio, sol aging time. IR spectra of the gel films prepared from TEOS at various R are given. At small values of R the absorption peaks assignable to C-H vibration in $-OC_2H_5$ groups are observed around 3000 and 1500-1300 $cm^{-1}$. These bands indicate that the -$-OC_2H_5$ groups are retained in the gel at small values of R because of incomplete hydrolysis of TEOS. Film behaviour was interpreted in terms of the dependence of hydrolysis and condensation rates on the interplay between sol pH and waterprecursor ratio. Film thickness was found to increase by approximately a factor of two as waterprecursor ratio increased from two to six. Film thickness also increased with sol prepolymerization time. Surface quality was correlated with processing conditions.

  • PDF

Pore Size Control of Silica-Coated Alumina Membrane for $CO_2$ Separation ($CO_2$ 선택투과 분리를 위한 Silica 코팅 Alumina 막의 세공 제어)

  • 서봉국;김성수;김태옥
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.263-269
    • /
    • 1999
  • For effective $CO_2$ separation using pore size controlled membrane, silica was deposited in the mesopores of a $\gamma$-alumina film by chemical vapor deposition of tetraethoxysilane (TEOS) and phenyl-substituted ethoxysilanes at 773-873K. The membranes prepared with phenyl-substituted ethoxysilanes were calcined to remove the phenyl group and control the pore size. The gas permaselectivity of prepared membranes was evaluated by using $H_2$, $CO_2$ $N_2$, $CH_2$ and $C_3H_8$ single component and a mixture of $CO_2$ and $N_2$. The membranes produced using TEOS contained micropores having permselectivity only to hydrogen, but the phenyl-subsitituted ethoxysilane derived membranes possessed micorpores which are recognizable molecules of $CO_2$, $N_2$ and $CH_4$. In the diphenyl-diethoxysilane-derived membrane, the $CO_2$ permeance and selectivity of $CO_2$/$CH_4$ were $10^{-6} m^3(STP) \cdot m^{-2} \cdot s^{-1} \cdot kPa^{-1}$ and 11, respectively. Therefore, the use of phenyl-substituted ethoxysilane was effective in controlling micropore size for $CO_2$ separation.

  • PDF

Silica aerogels for potential sensor material prepared by azeotropic mixture (공비혼합물로 제조된 다공성 센서재료용 실리카 에어로젤)

  • Shlyakhtina, A.V.;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.395-400
    • /
    • 2007
  • Ambient drying sol-gel processing was used for monolithic silica ambigels in the temperature range of $130-250^{\circ}C$. A new method of mesopore ambigels, which mean the aerogels prepared by ambient pressure drying process synthesis, is suggested at first. This method includes two important approaches. The first point is that $SiO_{2}$ surface modification of wet gel was performed by trimethylchlorosilane in n-butanol solution. This procedure is provided the silica gel mesopore structure formation. The second point is a creation of the ternary azeotropic mixture water/n-butanol/octane as porous liquid, which is effectively provided removing of water such a low temperature by 2 step drying condition under ambient pressure. The silica aerogels, which were prepared by ambient pressure drying from azeotropic mixture of water/n-butanol/octane, are transparent, crack-free and mesoporous (pore size ${\sim}$ 5.6 nm) with surface area of ${\sim}$ $923{\;}m^2/g$, bulk density of $0.4{\;}g/cm^3$ and porosity of 85 %.

Effect of Boron Concentration on the UV Photosensitivity of Silica Glass Film for Planar Lightwave Circuit (Boron 첨가량이 평면광회로용 실리카 박막의 UV 감광성에 미치는 영향)

  • Kwon Ki Youl;Cho Seung-Hyun;Shin Dong Wook;Song Kug-Hyun;Lee Nak Kyu;Na Kyoung Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.11
    • /
    • pp.826-833
    • /
    • 2004
  • In this study, photosensitivity dynamics in SiO$_2$ glass with the composition similar to that of silica Planar Lightwave Circuit (PLC) devices was investigated as a fundamental study prior to the device fabrication. Silica bulk glasses with similar composition to the core layer of PLC devices were prepared with variable composition of B$_2$O$_3$. The photosensitivity in boron and germanium co-doped SiO$_2$ glass yields refractive index change $\Delta$n as high as 10$\^$-3/. However such index modulation disappeared after annealing. From the result of annealing experiment and W absorption / Raman spectra, we conclude the compaction model is applicable to our glass system.

Effect of Temperature on the Micro-scale Adhesion Behavior of Thermoplastic Polymer Film (열가소성 폴리머 필름의 마이크로 점착 거동에 대한 온도의 영향)

  • Kim, Kwang-Seop;Heo, Jung-Chul;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.86-95
    • /
    • 2009
  • Adhesion tests were carried out in order to investigate the effect of temperature on the adhesion behavior between a PMMA film and a fused silica lens in the micro scale. For the tests, a microtribometer system was specially designed and constructed. The pull-off forces on the PMMA film were measured under atmospheric condition as the temperature of the PMMA film was increased from 300 K to 443 K and decreased to 300 K. The contact area between the PMMA film and the lens was observed during the test. The adhesion behavior was changed with the change of the PMMA surface state as the temperature increased. In glassy state below 363 K, the pull-off force did not change with the increase of temperature. In rubbery state from 383 K to 413 K, the pull-off force increased greatly as the temperature increased. In addition, the area of contact was enlarged. In viscous state above 423 K, the fingering instability was observed in the area of contact when the PMMA film contacted with the lens. It was also found that the adhesion behavior can be varied with the thermal history of the PMMA film. The residual solvent in the PMMA film could emerge to the PMMA surface due to the heating and reduced the pull-off force.

Printing Performance Evaluation of Water-dispersed Pigment Ink according to Additive Conditions of Film Substrate Surface Coating Agent (필름기재 표면 코팅제의 첨가물질 조성 조건에 따른 수분산 안료잉크의 프린팅 성능 평가)

  • Hyeok-Jin Kim;Hye-Ji Seo;Eun-Ha Kang;Min-Woo Han;Dong-Hyeon Lee;Dong-Jun Kwon;Jin-Pyo Hong
    • Textile Coloration and Finishing
    • /
    • v.35 no.4
    • /
    • pp.196-205
    • /
    • 2023
  • Water-dispersed pigment is on-going study for without air pollution in the textile and print industry. Primer treatment is essential for the substrate to improve the printing quality of eco-friendly water-dispersed pigment ink. Otherwise in the case of untreated primer, the water-dispersed pigment ink will dry onto the surface and cause defective images. This study was conducted on film substrate coating (primer) to fix eco-friendly water-dispersed pigment ink on film substrate. The drying, bleeding, and color strength of the pigment ink were examined depending on the composition and mixing ratio of the coating solution. The mixing ratio of silica gel in the coating film is increased to 0, 0.5, 1, 2 and 3 and results that DK-1-3 of silica gel ratio of 1 showed the lowest bleeding such as 52%, the letter thickness of 0.76mm and DK-1-5 of SG ratio of 3 showed the highest bleeding such as 304%, the letter thickness of 2.02mm. The mixing ratio of SPA in the coating film is increased to 2.5, 5, 7.5, SPA ratio of 7.5 has a bleeding ratio of 9% and letter thickness of 0.544mm. It showed the closest value to 0.5mm. According to the result, the optimal mixing ratio of binder, polymer coagulant, silica gel is 100:7.5:1.

Effect of polymer adsorption on film formation of silica/PVA suspension

  • Kim, Sun-Hyung;Sung, Jun-Hee;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2009.10a
    • /
    • pp.79-84
    • /
    • 2009
  • Understanding the polymer adsorption in particle/binder/solvent system is important to achieve successful film products. While most of the reported work has dealt with the suspension microstructure, a few studies have focused on film formation. We investigated the effect of adsorption on film formation through measurement of adsorption amount in suspension and stress development in drying film with respect to mixing time ($t_m$). All of the adsorption amount (PVA), characteristic stress ($\sigma_{ch}$) exhibited similarities expressed by the form of $1-e^{t_m/{\tau}}$. The porous and non-unifonn dried film at short tm became close-packed and uniform with longer $t_m$. We found that polymer adsorption plays the key role in film fonnation as it introduces steric repulsion in suspension and suppresses the flocculation during solvent evaporation. We also found that the mixing time for the saturated polymer adsorption is the important variable to acquire the consolidated and uniform film microstructure.

  • PDF