• Title/Summary/Keyword: Silica composites

Search Result 369, Processing Time 0.023 seconds

Properties of Nano-Hybrid Coating Films Synthesized from Colloidal Silica-Silane (콜로이달 실리카와 실란으로부터 합성된 나노하이브리드 코팅 박막의 특성)

  • Na, Moon-Kyong;Ahn, Myeong-Sang;Kang, Dong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.232-233
    • /
    • 2006
  • In recent years the interest in organic/inorganic hybrid materials has increased at a fast rate. Nano organic-inorganic hybrid composites have shown advantages for preparing hard coating layers. Especially, nano hybrid composite has low environmental pollution. It has high transparency, hardness, toughness, thermal dissociation temperature, hydrophobicity by using nano sized inorganic material. There are many ways in which these materials may be synthesized, a typical one being the use of silica and silanes using the sol-gel process. The structure of sol-gel silica evolves as a result of these successive hydrolysis and condensation reactions and the subsequent drying and curing. The sol-gel reactions are catalyzed by acids and produce silica sol solutions. The silica sol grows until they reach a size where a gel transition occurs and a solid-like gel is formed. Colloidal silica(CS)/silane sol solutions were synthesized in variation with parameters such as different acidity and reaction time. In order to understand their physical and chemical properties, sol-gel coating films were fabricated on glass. From all sol-gel solutions, seasoning effect of sol-gel coating layer on glass was observed.

  • PDF

Improvement of the Filler Dispersion in Silica-Filled SBR Compounds Using Low Molecular Weight Polybutadiene Treated with Maleic Anhydride (Maleic Anhydride로 처리된 저분자량 폴리부타디엔을 이용한 실리카로 보강된 SBR 배합물에서 충전제 분산성 항상)

  • Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.41 no.1
    • /
    • pp.10-18
    • /
    • 2006
  • Influence of low molecular weight polybutadiene (liquid PB) treated with maleic anhydride on properties of a silica-filled SBR compounds was studied. Silica dispersion was improved by adding liquid PB. The liquid PB treated with maleic anhydride (liquid MAPB) was found to be more effective for the improvement of silica dispersion than the liquid PB without maleic anhydride (liquid NPB). Viscosity of the SBR compound decreased by adding the liquid PB. The crosslink density decreased with increase of the liquid PB content and the cure rate became slower with increasing the liquid PB content. Considering the experimental results, it was believed that addition of small amount of the liquid PB (less than 5 phr) was desirable to improve properties of silica-filled SBR compounds.

Recovery Behaviors of Natural Rubber Composites Thermally Aged in Altering Medium Systems of Air and Water (공기와 물의 교매질 시스템에서 열노화된 천연고무 복합체의 회복 거동)

  • Choi, Sung-Seen;Kim, Ok-Bae
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.181-189
    • /
    • 2013
  • Unfilled, carbon black-filled, and silica-filled natural rubber (NR) composites were aged with a circular deformation at $60-90^{\circ}C$ and the recovery behaviors were investigated. The samples were aged under the altering aging medium systems of air and distilled water every day for 10 days. The order of the recoveries according to the filler systems was unfilled > silica > carbon black. The recoveries of the samples aged in the air to water altering system were greater than those of the samples aged in the water to air altering system. The initial aging medium dominantly influenced the deformation level.

Electrical and Mechanical Properties of Epoxy/Heterogeneous Inorganic Composites Materials for the Application of Electric Power GIS Appliances (친환경 GIS용 전력기기의 적용을 위한 에폭시 이종무기물 복합재료의 전기적, 기계적 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1633-1640
    • /
    • 2018
  • Epoxy resin is a polar thermosetting polymer that is widely employed in different branches of industry and everyday life, due to their stable physical and chemical properties. Of all the polymer materials currently being used in the electrical insulation industry, epoxy resin is the most widely used kind, chosen as the base polymer material in the present study. Composites were prepared according to the mixing ratio (MS: MA, 1: 9, 3: 7, 5: 5, 7: 3, 9: 1)of mixture for Heterogeneous Minerals(Micro Silica:MS, Micro Alumina:MA) (MS+MA). We have investigated for AC electrical insulation breakdown characteristics and the dielectric properties (permittivity, dielectric loss, and conductivity) with frequency changes. The electrical AC insulation breakdown performance was improved with the increase of the mixing ratio of MS according to heterogeneous mineral material mixture(MS+MA). As Dielectric properties, the dielectric constant and dielectric loss increased with decreasing frequency and decreased with increasing MS content ratio of heterogeneous mineral mixture. Tensile strength and flexural strength according to the mixing ratio (MS + MA) of epoxy / heterogeneous mineral mixture were studied by mechanical properties. The performance of mechanical tensile and flexural strength was significantly improved as the fill contents ratio of MS increased.

Effects of Silane Coupled Silica on the Pysical Properties of Synthetic Rubber Compounds (실란 커프링제로 처리된 실리카가 합성고무 배합물의 물리적 특성에 미치는 영향)

  • Lee, Seag
    • Elastomers and Composites
    • /
    • v.33 no.3
    • /
    • pp.185-192
    • /
    • 1998
  • This study was investigated on the physical properties of synthetic rubber compounds containing silica and silane copuled silica. Surface area and pore volume of silane copuled silica appeared to be low compared with those of pure silica because silane coupling agent blocks the pore of silica surface during silanization reaction. Silica with large surface area and high structure showed the short scorch time$(t_5)$ and rapid cure rate. The silane coupled silica showed the shorter scorch time and more rapid cure rate than pure silica because of the of effect of sulfur in the silane coupling agent(Si 69), The high value of $N_2SA$ minus CTAB com-pared with surface area and structure of silica showed the high 300% modulus. Also, the surface area and structure of silica did not affected the amount of PICO loss that indicate the abrasion resistance but affected the amount of cut and chip loss.

  • PDF

The Study of Optimized Compounds Containing Silica and Coupling Agent to Improve the Physical Properties of Rubber Compounds (고무물성 향상을 위한 실리카 및 실란 커플링제의 최적배합에 관한 연구)

  • Oh, Sae-Chul;Go, Jin-Hwan;Lee, Seag;Park, Nam-Cook
    • Elastomers and Composites
    • /
    • v.30 no.2
    • /
    • pp.112-121
    • /
    • 1995
  • The physical properties of rubber compounds containing silica and siliane coupling agent in order to replace the carbon black and prepare for environmental regulation showed improved dynamic properties(rebound, heat build-up, $60^{\circ}C\;tan\;{\delta}$), but the abrasion resistance did not improve compared with the compounds containing carbon black. Also, curing retardation because of coherent structure of silica improved by the addition of DEG, but the mixing step change of activators did not so much improve the static and dynamic properties of the compounds containing high synthetic rubber, the status of mixing and dispersion showed that the compounds containing carbon black was much better than the compounds containing silica by TEM investigation.

  • PDF

The Effect of Surface Area of Silicas on Their Reinforcing Performance to Styrene-butadiene Rubber Compounds

  • Ryu, Changseok;Kim, Sun Jung;Kim, Do Il;Kaang, Shinyoung;Seo, Gon
    • Elastomers and Composites
    • /
    • v.51 no.2
    • /
    • pp.128-137
    • /
    • 2016
  • The effect of the surface area of silicas on their reinforcing performance to styrene-butadiene rubber (SBR) compounds was systematically investigated. The feasibility of the Brunauer-Emmett-Teller surface area ($S_{BET}$) as a parameter representing the characteristics of the silicas was discussed compared to the mesopore volume, c value, oil absorption, and uptake of silane. The increase in $S_{BET}$ of silicas caused a considerable increase in Mooney viscosity, minimum torque, and hysteresis loss of the silica-filled SBR compounds, while significantly enhancing their abrasion property. These changes were explained by the attrition between the hydrophilic silica surface and the hydrophobic rubber chains. As expected, the change in $S_{BET}$ did not induce any remarkable changes in the cure, processing, tensile, and dynamic properties of the silica-filled SBR compounds because the crosslinking density of the rubber chains mainly determined these properties.

Synthesis of Copoly(amide-imide)s Based on Silica Nano Particles-polyacrylamide

  • Min, Jun Ho;Park, Chan Young;Min, Seong Kee
    • Elastomers and Composites
    • /
    • v.51 no.2
    • /
    • pp.138-146
    • /
    • 2016
  • It is an inconvenience for silica nano-particles to dry again when using it in that they cohere each other through moisture in the air. Acrylamide groups were introduced to improve such inconvenience and copolymerized with silica nano-particles and then we copolymerized again with polyamic acid in order to increase thermal characteristic. Amide block copolymers were prepared using silica and (3-mercaptopropyl) trimethoxysilane (MPTMS) with a siloxane group, using 2,6-Lutidine as a catalyst. Amide block polymers and copolymers were synthesized via ATRP after brominating pyromellitic dianhydride (PMDA) and polyamic acid of methylene diphenyl diamine (MDA), using ${\alpha}$-bromo isobutyryl bromide. Characteristic peaks of copolymer with amide and imide groups and patterns of amorphous polymers were researched by FT-IR and XRD analyses and the analysis of surface characteristic groups was conducted via XPS. A change in thermal properties was examined through DSC and TGA and solubility for solvents was also researched.

The propertise of the compressive strength of ultra-high strength Steel Fiber Reinforced Cementitious Composites with mineral admixtures (광물질 혼화재를 사용한 초고강도 SFRCC의 특성)

  • Park, Jung-Jun;Go, Gyung-Taek;Kang, Su-Tae;Ryu, Gum-Sung;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.473-476
    • /
    • 2005
  • Silica fume has merits of filling the voids, enhancement of reheological chracteristics, prduction of secondary hydrates by pozzolanic reaction in reactive powder concretes. However silica fume has been imported in high-cost in domestic industry, we need to investigate replaceable material in stead of silica fume in a view of economy Therefore, in this paper, in order to investigation replacement of silica fume in ultra-high strength SFRCC we used another mineral admixtures like that fly-ash, blast slag.

  • PDF

A Study on the Thermally Expandable Microspheres for Wallpaper by the particle size of Colloidal Silica

  • Lee, Sang-Jin;Jo, Kang-Jin;Park, Jin-Wook;Kim, Myeong Woo;Kim, Ji-Hoo
    • Elastomers and Composites
    • /
    • v.53 no.3
    • /
    • pp.131-135
    • /
    • 2018
  • This study was aimed at improving the white index (WI) to prepare thermally expandable microspheres for wallpaper. In particular, thermally expandable microspheres were prepared for different colloidal silica particle sizes to study thermal properties, foaming ratio, and WI. The spheres obtained from tiny colloidal silica were the best in terms of WI and yellowing. Additionally, thermogravimetric analysis results show that small colloidal silica particles are more likely to be adsorbed physically or chemically to the microsphere surface, thereby improving WI at higher temperatures.