• Title/Summary/Keyword: Silica$SiO_2$

Search Result 664, Processing Time 0.034 seconds

Hydrochemical characteristics of ground and geothermal waters in the Haeundae hot-spring area, Pusan, Korea (부산 해운대지역 지하수와 지열수의 수리화학적 특성)

  • Shim, Hyong-Soo;Yeong, We-Yeong;Sung, Ig-Hwa;Lee, Byeong-Dae;Cho, Byong-Wook;Hwang, Jin-Yeon
    • Journal of Environmental Science International
    • /
    • v.9 no.3
    • /
    • pp.241-252
    • /
    • 2000
  • Twenty-two water samples(fifteen groundwater and seven geothermal water samples) were collected to elucidate chemical characteristics of the ground and geothermal waters in the Haeundae hot spring area and its vicinity. Major and honor elements were analyzed for ground and geothermal water samples. The concentrations of $K^+$, Na+$, $Ca^{2+}$, $SO_4^{2-}$, $Cl^-$, ^F^-$ and $SiO_2$ were higher in the geothermal water samples than the groundwater samples except $HCO_3^- and Mg^{2+}$ ions. Based on the contents of Fe, Zn, Cu, Al, Mn and Pb, some of the ground and geothermal water samples are contaminated by anthropogenic sources. The ground waters shown on the Piper diagram belong to $Ca-HCO_3$ type, while the geothermal waters Na-Cl type. The graphs of $Cl^-$ versus $Na^+$, $Ca^{2+}, Mg^{2+}, K^+, SO_4^{2-} and HCO_3^-$ indicate that the groundwater is related partly with mineral-water reaction and partly with anthropogenic contamination, while the geothermal water is related with saline water. On the phase stability diagram, groundwater and thermal water mostly fall in the field of stability of kaolinite. This indicates that the ground and geothermal waters proceed with forming kaolinite. Factor and correlation analyses were carried out to simplify the physicochemical data into grouping some factors and to find interaction between them. Based on the Na-K, Na-K-Ca and Na-K-Ca-Mg geothermometers and silica geothermometers, the geothermal reservoir is estimated to have equilibrium temperature between 125${$\mid$circ}C$ and 160${$\mid$circ}C$.

  • PDF

A Study on Intermediate Layer for Palladium-Based Alloy Composite Membrane Fabrication (팔라듐 합금 복합막 제조를 위한 Intermediate Layer 연구)

  • Hwang, Yong-Mook;Kim, Kwang-Je;So, Won-Wook;Moon, Sang-Jin;Lee, Kwan-Young
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.458-464
    • /
    • 2006
  • The Pd-Ni-Ag alloy composite membrane using modified porous stainless steel (PSS) as a substrate was prepared by a electroless plating technique. In this work, we have introduced the intermediate layer between Pd-based alloy and a metal substrate. As an intermediate layer, the mixtures of nickel powder and inorganic sol such as $SiO_{2}$ sol, $Al_{2}O_{3}$ sol, and $TiO_{2}$ sol were used. The intermediate layers were coated onto a PSS substrate according to various membrane preparation conditions and then $N_{2}$ fluxes through the membranes with different intermediate layers were measured. The surface morphology of the intermediate layer in the mixture of nickel powder and inorganic sol was analyzed using scanning electron microscope (SEM). Finally, the Pd-Ni-Ag alloy composite membrane using the support coated with the mixture of nickel powder and silica as an intermediate layer was fabricated and then the gas permeances for $H_{2}$ and $N_{2}$ through the Pd-based membrane were investigated. The selectivity of $H_2/N_2$ was infinite and the $H_{2}$ flux was $1.39{\times}10^{-2}mol/m^2{\cdot}s$ at the temperature of $500^{\circ}C$ and trans-membrane pressure difference of 1 bar.

Charateristics of Hydrogen Iodide Decomposition using Ni-Pt Bimetallic Catalyst in Sulfur-Iodine Process (황-요오드 열화학 수소 생산 공정에서 니켈-백금 이원금속 촉매를 이용한 요오드화수소 분해 특성)

  • Kim, Soo-Young;Go, Yoon-Ki;Park, Chu-Sik;Bae, Ki-Kwang;Kim, Young-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • This study was performed to develop a low Pt content catalyst as a catalyst for HI decomposition in S-I process. Bimetallic catalysts added various amounts of Pt on a silica supported Ni catalyst were prepared by impregnation method. HI decomposition was carried out using a fixed bed reactor. As a result, Ni-Pt bimetallic catalyst showed enhanced catalytic activity compared with each monometallic catalyst. Deactivation of Ni-Pt catalyst was not observed while deactivation of Ni monometallic catalyst was rapidly occurred in HI decomposition. The HI conversion of Ni-Pt bimetallic catalyst was increased similar to Pt catalyst with increase of the reaction temperature over a temperature range 573K to 773K. From the TG analysis, it was shown that $NiI_2$ remained on the Ni(5.0)-Pt(0.5)/$SiO_2$ catalyst after the HI decomposition reaction was decomposed below 700K. It seems that small amount of Pt in bimetallic catalyst increase the decomposition of $NiI_2$ generated after the decomposition of HI. Consequently, it was considered that the activity of Ni-Pt bimetallic catalyst was kept during the HI decomposition reaction.

Mineral Phase and Microstructure Behaviors on Burning Condition of Domestic Low-grade Limestone (국내 저품위 석회석의 소성조건에 따른 광물상 및 미세구조 거동)

  • Cho, Jin Sang;Moon, Ki-Yeon;Choi, Moon-Kwan;Cho, Kye-Hong;Ahn, Ji-Whan;Yeon, Kyu-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.2
    • /
    • pp.88-96
    • /
    • 2014
  • Natural hydraulic lime (NHL) is produced by burning a form of low-grade limestone containing silica and alumina which, above certain temperatures, combine with calcium oxide. The resulting silicates and aluminates impart hydraulic properties to the product. This study aims to determine the calcined characteristics of NHL using domestic low-grade limestone with maximized hydraulic properties. Six types of low-grade limestone containing $SiO_2$ were selected and experiments were carried out with different burning temperatures and holding times. The burning temperature and holding time as the most suitable burning conditions were $1,200^{\circ}C$ to $1,300^{\circ}C$ and 3 to 7 h, respectively, for the manufacturing of NHL from domestic low-grade limestone. These results demonstrate the feasibility of NHL using domestic low-grade limestone to produce NHL.

Geochemistry of Granitoids in the Kwangyang-Seungju Area (광양-승주지역에 분포하는 화강암류의 암석화학)

  • Lee, Chang Shin;Kim, Yong Jun;Park, Cheon Young;Lee, Chang Ju
    • Economic and Environmental Geology
    • /
    • v.25 no.1
    • /
    • pp.51-60
    • /
    • 1992
  • The pluton rocks in Kwangyang-Seungju area consist of two mica granite, hornblende diorite, Rimunri quartz diorite, grnodiorite porphyry and granophyre. The analysis of the geochronological data by the methods of K-Ar for the hornblende from Rimunri quartz diorite and hornblende diorite show that the ages are found to be $86{\pm}3.3$ Ma and $108{\pm}4$ Ma, respectively, and K-Ar age for chlorite from the altered two mica granite which intruded by the hornblende diorite of the Bonjeong mine shows $108{\pm}4$ Ma; K-Ar age for sericite from the greisenized hornblende diorite, which is closely associated with the Bonjeong ore deposits, is dated as $94.2{\pm}2.4$ Ma. They correspond to the igneous activity of the Bulgugsa Disturbance periods in the area. In chemical feature for oxides versus silica and AFM triagular diagrams of the pluton rocks in the study area, there is a suggestion of the possibility that these rock facies area a Calc-alkali series of differentiated products by low-pressure crystal fractionation processes in $SiO_2$-undersaturated suites. Compared with hornblende diorite, andesite and granodiorite porphyry, two mica granite, Rimunri quartz diorite and granophyre exhibit a wider range of normalized REE abundance and negative Eu anomalies. Such anomalies imply more extensive feldspar fractionation during crystallization. The Rimunri quartz diorite and hornblende diorite occurring in the margin of four mines(Bonjeong, Okdong, Soungchei and Saungyeul) of this area have high contents of As, Sb, Cu and Zn which have been shown as the best indicators in hypogene gold deposits and low contents of Ba, Cr served as more sensitive indicators. And the granitoids are regarded as the rocks associated with gold and sulfide mineralization of the area.

  • PDF

Distribution and Exposure Characteristics of Pneumoconiosis Patients in Fuel Complexes (연료단지 진폐증 환자 분포현황 및 노출특성)

  • Jong-Hyeon Jung
    • Journal of Environmental Science International
    • /
    • v.33 no.2
    • /
    • pp.161-168
    • /
    • 2024
  • This study was conducted to identify the pollutants generated by the fuel complex and to determine the health effects of the surrounding residents. In addition, based on the results of epidemiological surveys and health impact surveys of local residents, we analyze the distribution of patient groups and exposure characteristics according to the distance from the fuel complex boundary. Samples were collected from the briquette plant within the fuel complex and analyzed by SEM-EDXA, X-ray Fluorescence Spectrometer, and ICP. In addition, the distribution of patients and exposure characteristics were analyzed according to the distance from the fuel complex and yard boundaries. Analysis of briquette samples from the fuel complex showed that the average particle size was 10-30 ㎛, the shape was irregular, and SiO2 accounted for more than 50%. It is believed that silica, which causes pneumoconiosis, may have been scattered into the air. In particular, there was a large distribution of 5 ㎛ particles that affect respiratory diseases. According to the analysis of the residential addresses and distribution of pneumoconiosis cases, many pneumoconiosis cases were located in the area between 200 and 500 meters from the boundary of the fuel complex. In addition, 28 pneumoconiosis cases were identified as a result of the epidemiological survey and health impact survey at the fuel complex. In detail, there were 8 cases of occupational pneumoconiosis, 6 cases of environmental pneumoconiosis, and 14 cases of occupational and environmental pneumoconiosis. The confirmed pneumoconiosis cases were located between 0.3 and 1.1 kilometers from the fuel complex. It was found that environmental pollutants generated by the fuel complex adversely affect the health of local residents. In particular, there are many cases of pneumoconiosis in the area between 200 and 500 meters from the boundary of the fuel complex, and this distance is considered to be the direct and indirect impact zone of the briquette plant.

A Foaming Ceramics for Insulation of Building Equipment (건축설비의 단열 보온을 위한 발포세라믹 개발)

  • Lee, Ju-Young;Song, Young-Hwan;Shin, Hae-Jong;Choi, Jae-Ho;Jang, Sung-Cheol;Yun, Kang-Ro;Lee, Yong-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.369-374
    • /
    • 2008
  • This study is an inorganic foaming ceramic by sol-gel reaction in order to overcome weak point of insulator using in construction equipment. We shall be able to confirm as the existing product substitute is possible result of this study. The solution where the silicate, the ceramic powder and the additive are included which makes foaming ceramic slurry, then the insulator made by used $CO_2$ Sol-Gel reaction. There being will be able to manufacture the insulator where the economical efficiency is excellent confirmed at the start product which is completed. The recording gel time decreases when the silicate will increase. Uses the hydrogen peroxide and fe make foam, when additionally surface preparation the fluorine resin, the water tolerance increases and will be able to complement the weak point of the silicate which omits in the water. The case which will use the loess powder with the research method which sees specially was environment-friendly product and according to appearing, the physical properties of nonflammability.

  • PDF

A novel approach for rice straw agricultural waste utilization: Synthesis of solid aluminosilicate matrices for cesium immobilization

  • Panasenko, A.E.;Shichalin, O.O.;Yarusova, S.B.;Ivanets, A.I.;Belov, A.A.;Dran'kov, A.N.;Azon, S.A.;Fedorets, A.N.;Buravlev, I. Yu;Mayorov, V. Yu;Shlyk, D. Kh;Buravleva, A.A.;Merkulov, E.B.;Zarubina, N.V.;Papynov, E.K.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3250-3259
    • /
    • 2022
  • A new approach to the use of rice straw as a difficult-to-recycle agricultural waste was proposed. Potassium aluminosilicate was obtained by spark plasma sintering as an effective material for subsequent immobilization of 137Cs into a solid-state matrix. The sorption properties of potassium aluminosilicate to 137Cs from aqueous solutions were studied. The effect of the synthesis temperature on the phase composition, microstructure, and rate of cesium leaching from samples obtained at 800-1000 ℃ and a pressure of 25 MPa was investigated. It was shown that the positive dynamics of compaction was characteristic of glass ceramics throughout the sintering. Glass ceramics RS-(K,Cs)AlSi3O8 obtained by the SPS method at 1000 ℃ for 5 min was characterized by a high density of ~2.62 g/cm3, Vickers hardness ~ 2.1 GPa, compressive strength ~231.3 MPa and the rate of cesium ions leaching of ~1.37 × 10-7 g cm-2·day-1. The proposed approach makes it possible to safe dispose of rice straw and reduce emissions into the atmosphere of microdisperse amorphous silica, which is formed during its combustion and causes respiratory diseases, including cancer. In addition, the obtained is perspective to solve the problem of recycling long-lived 137Cs radionuclides formed during the operation of nuclear power plants into solid-state matrices.

The Numerical Simulation of a 8-Channel Optical Wavelength Division Multiplexer with Channel Spacing $\Delta\lambda$=0.8 nm

  • Kim, Sang-Duk;Ku, Dae-Sung;Yun, Jung-Hyun;Lee, Jae-Gyu;Kim, Jong-Bin
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.1-4
    • /
    • 2002
  • The numerical alaysis of optical device, silicabased device, are presented. The purpose of this paper is to simulate and to design a 8-channel optical wavelength division multiplexer(OWDM) based on Mach-Zehnder Interferometer(MZI) with wavelength spacing between channels Δλ=0.8 nm at central wavelength λ=1.55 ${\mu}{\textrm}{m}$. In initial condition fur simulating, we assumed as follows. A channel waveguide is made from silica based P-doped SiO2 core layers in order to coupling with a fiber easily and its core dimension was 6 ${\mu}{\textrm}{m}$$\times$6 ${\mu}{\textrm}{m}$. The core and clad index of channel waveguide were 1.455 and 1.444, separately, at λ=1.55 ${\mu}{\textrm}{m}$. Where, the separation between channel waveguides in coupling region was 3 ${\mu}{\textrm}{m}$. As a result of analysis, a group mode index of channel waveguide was 1.4498370, was gained by Hermite-Gaussian Method(HGM). Also, the channel spacing was determined by the waveguide arm length difference and was Δλ=0.8 nm as like a proposed condition. The central wavelength of a designed-multiplexer was activated about wavelength λ=1.55 ${\mu}{\textrm}{m}$, and we certificated that it can be used to 8-channel optical wavelength division multiplexer/demultiplexer.

  • PDF

Change of phase transformation and bond strength of Y-TZP with various hydrofluoric acid etching

  • Mi-Kyung Yu;Eun-Jin Oh;Myung-Jin Lim;Kwang-Won Lee
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.54.1-54.10
    • /
    • 2021
  • Objectives: The purpose of this study was to quantify phase transformation after hydrofluoric acid (HF) etching at various concentrations on the surface of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP), and to evaluate changes in bonding strength before and after thermal cycling. Materials and Methods: A group whose Y-TZP surface was treated with tribochemical silica abrasion (TS) was used as the control. Y-TZP specimens from each experimental group were etched with 5%, 10%, 20%, and 40% HF solutions at room temperature for 10 minutes. First, to quantify the phase transformation, Y-TZP specimens (n = 5) treated with TS, 5%, 10%, 20% and 40% HF solutions were subjected to X-ray diffraction. Second, to evaluate the change in bond strength before and after thermal cycling, zirconia primer and MDP-containing resin cement were sequentially applied to the Y-TZP specimen. After 5,000 thermal cycles for half of the Y-TZP specimens, shear bond strength was measured for all experimental groups (n = 10). Results: The monoclinic phase content in the 40% HF-treated group was higher than that of the 5%, 10%, and 20% HF-treated groups, but lower than that of TS-treated group (p < 0.05). The 40% HF-treated group showed significantly higher bonding strength than the TS, 5%, and 10% HF-treated groups, even after thermal cycling (p < 0.05). Conclusions: Through this experiment, the group treated with SiO2 containing air-borne abrasion on the Y-TZP surface showed higher phase transformation and higher reduction in bonding strength after thermal cycling compared to the group treated with high concentration HF.