• Title/Summary/Keyword: Silica$SiO_2$

Search Result 664, Processing Time 0.025 seconds

SYNTHESIS OF SILICA-COATED Au WITH Ag, Co, Cu, AND Ir BIMETALLIC RADIOISOTOPE NANOPARTICLE RADIOTRACERS

  • Jung, Jin-Hyuck;Jung, Sung-Hee;Kim, Sang-Ho;Choi, Seong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.971-976
    • /
    • 2012
  • Silica-coated Au with Ag, Co, Cu, and Ir bimetallic radioisotope nanoparticles were synthesized by neutron irradiation, after coating $SiO_2$ onto the bimetallic particles by the sol-gel St$\ddot{o}$ber process. Bimetallic nanoparticles were synthesized by irradiating aqueous bimetallic ions at room temperature. Their shell and core diameters were recorded by TEM to be 100 - 112 nm and 20 - 50 nm, respectively. The bimetallic radioisotope nanoparticles' gamma spectra showed that they each contained two gamma-emitting nuclides. The nanoparticles could be used as radiotracers in petrochemical and refinery processes that involve temperatures that would decompose conventional organic radioactive labels.

Thickness Control of Core Shell type Nano CoFe2O4@SiO2 Structure (두께 조절이 가능한 코어셸 형태의 SiO2 coated CoFe2O4 구조)

  • Yu, Ri;Kim, Yoo-Jin;Pee, Jae-Hwan;Kim, Kyung-Ja
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.230-234
    • /
    • 2010
  • Homogenous silica-coated $CoFe_2O_4$ samples with controlled silica thickness were synthesized by the reverse microemulsion method. First, 7 nm size cobalt ferrite nanoparticles were prepared by thermal decomposition methods. Hydrophobic cobalt ferrites were coated with controlled $SiO_2$ using polyoxyethylene(5)nonylphenylether (Igepal) as a surfactant, $NH_4OH$ and tetraethyl orthosilicate (TEOS). The well controlled thickness of the silica shell was found to depend on the reaction time and the amount of surfactant used during production. Thick shell was prepared by increasing reaction time and small amount of surfactant.

Effect of Fluxes on the Wear of MgO Coating Materials for Tundish (턴디쉬용 MgO Coating 재의 손상에 미치는 Flux의 영향)

  • 홍기곤;박재원;김효준
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.677-684
    • /
    • 1997
  • The effects of fluxes on MgO coating materials for tundish were investigated. As the number of charge in continuous casting was increased, the basicity of tundish slag was decreased due to the increase of silica formed by dissolution from rice hull. As a result, the wear of magnesia lining was increased. In aggregates of MgO coating materials, magnesioferrite was formed by the reaction between magnesia and ferric oxide formed by the oxidation of molten steel, while matrix parts of MgO coating materials were worn by CaO-Al2O3-SiO2 compounds. Silica in rice hull extracted to the molten slag reduced basicity of slag and formed forsterite in the result of its reaction with magnesia lining. Also, fayalite was formed from the reaction between silica and ferric oxide and it caused the increment of magnesia lining's wear. The wear of magnesia lining by flux of CaO-SiO2 was larger than that of Cao-Al2O3 and calcia in the flux increased the wear of magnesia lining through the formation of rankinite.

  • PDF

One-pot Synthesis of Multifunctional Mn3O4/mesoporous Silica Core/shell Nanoparticles for Biomedical Applications

  • Lee, Dong Jun;Lee, Nohyun;Lee, Ji Eun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.113-118
    • /
    • 2022
  • Multifunctional nanomaterials based on mesoporous silica nanoparticles (MSN) and metal oxide nanocrystals are among the most promising materials for theragnosis because of their ease of modification and high biocompatibility. However, the preparation of multifunctional nanoparticles requires time-consuming multistep processes. Herein, we report a simple one-pot synthesis of multifunctional Mn3O4/mesoporous silica core/shell nanoparticles (Mn3O4@mSiO2) involving the temporal separation of core formation and shell growth. This simple procedure greatly reduces the time and effort required to prepare multifunctional nanoparticles. Despite the simplicity of the process, the properties of nanoparticles are not markedly different from those of core/shell nanoparticles synthesized by a previously reported multistep process. The Mn3O4@mSiO2 nanoparticles are biocompatible and have potential for use in optical imaging and magnetic resonance imaging.

The Characteristic Control of Spherical Silica Particle Using by W/O Type Emulsion(I);The analysis of Particle shape and size distribution of silica as a function mixing speed (W/O형 에멀젼을 이용한 구형 실리카 입자의 특성제어(제1보);교반속도에 따른 실리카 입자의 형태 및 입도 분석)

  • Park, Heung-Cho;Kim, Sang-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 2006
  • The W/O emulsion was formed by mixing hydrophobic nonion surfactants of span 80 and tween 60 with kerosine, and by adding sodium silicate aqueous solution. Precipitating the W/O emulsion by sodium bicarbonate resulted in spherical silica particles. Shape and size distribution of silica particles were observed. The particles were spherical and they have narrow size distribution. Particle sizes were 9.29, 7.39 and $5.73\;{\mu}m$ at homogenizer speed of 2500, 3000, and 3500 rpm, respectively. The particle size was decreased by increasing agitation speed due to the formation of emulsion droplet. At fixed agitation speed, absorbed paraffin oil weight were measured and the $SiO_2/Na_2O$ mole ratio effects on particle size were investigated. Particle size was decreased by increasing the mole ratio of $SiO_2/Na_2O$.

Surface Charge and Morphological Characterization of Mesoporous Cellular Foam Silica/Nafion Composite Membrane by Using EFM (정전기력 현미경을 사용한 메조포러스 실리카/나피온 합성 이온교환막의 표면 전하 및 모폴로지 연구)

  • Kwon, Osung
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1173-1182
    • /
    • 2018
  • Mesoporous silica allows proper hydration of an ion exchange membrane under low relative humidity due to its strong hydrophilicity and structural characteristic. A mesoporous silica and Nafion composite membrane shows good proton conductivity under low relative humidity. An understanding of ion-channel formation and proton transfer through an ion-channel network in mesoporous silica and Nafion composite membranes is essential for the development and the optimization of ion exchange membranes. In this study, a mesoporous cellular foam $SiO_2/Nafion$ composite membrane is fabricated, and its proton conductivity and performance are measured. Also, the ion-channel distribution is analyzed by using electrostatic force microscopy to measure the surface charge density of the mesoporous cellular foam $SiO_2/Nafion$ composite membrane. The research reveals a few remarkable results. First, the composite membrane shows excellent proton conductivity and performance under low relative humidity. Second, the composite membrane is observed to form ion-channel-rich and ion-channel-poor region locally.

Color Evolution and Phase Transformation of α-FeOOH@SiO2 and β-FeOOH@SiO2 pigments (SiO2가 코팅된 α-FeOOH와 β-FeOOH의 상전이를 통한 SiO2가 코팅된 α-Fe2O3의 색상 연구)

  • Yu, Ri;Choi, Kyoon;Pee, Jae-Hwan;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.210-214
    • /
    • 2013
  • This manuscript reports on compared color evolution about phase transformation of ${\alpha}-FeOOH@SiO_2$ and ${\beta}-FeOOH@SiO_2$ pigments. Prepared ${\alpha}$-FeOOH and ${\beta}$-FeOOH were coated with silica for enhancing thermal properties and coloration of both samples. To study phase and color of ${\alpha}$-FeOOH and ${\beta}$-FeOOH, we prepared nano sized iron oxide hydroxide pigments which were coated with $SiO_2$ using tetraethylorthosilicate and cetyltrimethyl-ammonium bromide as a surface modifier. The silica-coated both samples were calcined at high temperatures (300, 700 and $1000^{\circ}C$) and characterized by scanning electron microscopy, CIE $L^*a^*b^*$ color parameter measurements, transmission electron microscopy and UV-vis spectroscopy. The yellow ${\alpha}$-FeOOH and ${\beta}$-FeOOH was transformed to ${\alpha}-Fe_2O_3$ with red, brown at 300, $700^{\circ}C$, respectively.

Fabrication of Uniform Hollow Silica Nanospheres using a Cationic Polystyrene Core

  • Yun, Dong-Shin;Jang, Ho-Gyeom;Yoo, Jung-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1534-1538
    • /
    • 2011
  • Uniform, hollow nanosilica spheres were prepared by the chemical coating of cationic polystyrene (cPS) with tetraethylorthosilicate (TEOS), followed by calcination at 600 $^{\circ}C$ under air. cPS was synthesized by surfactant-free emulsion polymerization using 2,2'-azobis (2-methyl propionamidine) dihydrochloride as the cationic initiator, and poly(vinyl pyrrolidone) as a stabilizer. The resulting cPS spheres were 280 nm in diameter, and showed monodispersion. After coating, the hollow silica product was spherically shaped, and 330 nm in diameter, with a narrow distribution of sizes. Dispersion was uniform. Wall thickness was 25 nm, and surface area was 96.4 $m^2/g$, as determined by BET. The uniformity of the wall thickness was strongly dependent upon the cPS surface charge. The effects of TEOS and ammonia concentrations on shape, size, wall thickness, and surface roughness of hollow $SiO_2$ spheres were investigated. We observed that the wall thicknesses of hollow $SiO_2$ spheres increased and that silica size was simultaneously enhanced with increases in TEOS concentrations. When ammonia concentrations were increased, the irregularity of rough surfaces and aggregation of spherical particles were more severe because higher concentrations of ammonia result in faster hydrolysis and condensation of TEOS. These changes caused the silica to grow faster, resulting in hollow $SiO_2$ spheres with irregular, rough surfaces.

Surface Modification of Iron Oxide Particle by Silica-contained Materials (실리카계 물질에 의한 산화철 입자의 표면개질)

  • Ryu, Beyong-Hwan;Lee, Jung-Min;Koh, Jae-Cheon
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.830-836
    • /
    • 1997
  • The surface modification of iron oxide particle produced from steel-pickled acid by sodium-contained materials was studied. The molar ratio of $SiO_2$ to $Na_2O$ of sodium silicate was 1, 2, 3.5, respectively. The dispersion stability of iron oxide suspension as functions of amount of silica and pH was evaluated by surface charge and sedimentation velocity of iron oxide particle. Then the amount of sodium silicate was determined to provide a dispersion stability of iron oxide particle above pH 7. Finally, the surface modification of iron oxide particle with sodium silicate as silica-contained materials was done by wet ball milling. In the results of study, the dispersion stability of silica modified iron oxide particle was largely depended on amount of silica and pH together. The untreated iron oxide was unstable at pH 8, i.e. isoelectric point, but, the surface modified iron oxide particle with 0.8wt% silica was stable above pH 5. The dispersion stability was enhanced with 0.2wt% of anionic polyelectrolyte.

  • PDF