• Title/Summary/Keyword: Silage corn

Search Result 303, Processing Time 0.028 seconds

Quality and Feed Value of Ensiled Whole Crop Corn with Cage Layer Excreta and Concentrate (배합사료를 혼합한 옥수수-계분 silage의 품질과 사료가치)

  • 고영두;김두환;김재황;강한석;박재학
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.10 no.3
    • /
    • pp.164-171
    • /
    • 1990
  • This study was carried out to enhance the nutritional value of whole crop corn silage and the utilization of animal waste as a ruminant feedstuffs. Whole crop corn were ensiled with cage layer excreta and concentrate. Treatments included whole crop corn silage (control), 10% cage layer excreta and concentrate-corn silage (CES lo), 20% cage layer excreta and 10% concentrate-corn silage (CES 20) and 30% cage layer excreta and 10% concentrate-corn silage (CES 30). The characteristics of silage fermentation was evaluated. Digestibility and palatability of the silage were observed through the feeding trial with four male Corridale sheep. The results obtained are summarized as follows: 1. Cage layer excreta-corn silage showed higher contents of crude protein and crude ash than control silage, while crude fibre content was significantlv lower than that of control silage (P(.01). 2. Total nitrogen and ammonia nitrogen content of the cage layer excreta-corn silage was significantly (P< .01) higher than that of control, but CES 10 silage was good in quality. 3. Lactic acid content of CES 10 silage was the highest, but that of CES 20 and CES 30 silage was lower than that of control. CES 20 and CES 30 silage was lower lactic acid content and higher pH than control. Therefore Flieg's score was wrose than that of control silage. 4. The numbers of total bacteria and lactic fermentation bacteria were estimated lo7-10' and 10"1OH, respectively, and there were no significant differences among treatments. Coliform numbers were not detected with CES 10 silage while were detected lo3 per gram in CES 30 silage. 5. Digestibility of crude protein, crude fibre and ADF was improved significantly in the animals fed the cage layer excreta-corn silage compared with animals fed the control silage. DCP and TDN were the highest in the CES 10 silage. 6. The intake of daily nitrogen and dry matter per metabolic body weight was the highest in animals fed the CES 10 silage.lage.

  • PDF

Effects of Feeding Corn-lablab Bean Mixture Silages on Nutrient Apparent Digestibility and Performance of Dairy Cows

  • Qu, Yongli;Jiang, Wei;Yin, Guoan;Wei, Chunbo;Bao, Jun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.4
    • /
    • pp.509-516
    • /
    • 2013
  • This study estimated the fermentation characteristics and nutrient value of corn-lablab bean mixture silages relative to corn silages. The effects of feeding corn-lablab bean mixture silages on nutrient apparent digestibility and milk production of dairy cows in northern China were also investigated. Three ruminally cannulated Holstein cows were used to determine the ruminal digestion kinetics and ruminal nutrient degradability of corn silage and corn-lablab bean mixture silages. Sixty lactating Holstein cows were randomly divided into two groups of 30 cows each. Two diets were formulated with a 59:41 forage: concentrate ratio. Corn silage and corn-lablab bean mixture silages constituted 39.3% of the forage in each diet, with Chinese wildrye hay constituting the remaining 60.7%. Corn-lablab bean mixture silages had higher lactic acid, acetic acid, dry matter (DM), crude protein (CP), ash, Ca, ether extract concentrations and ruminal nutrient degradability than monoculture corn silage (p<0.05). Neutral detergent fiber (NDF) and acid detergent fiber (ADF) concentrations of corn-lablab bean mixture silages were lower than those of corn silage (p<0.05). The digestibility of DM, CP, NDF, and ADF for cows fed corn-lablab bean mixture silages was higher than for those fed corn silage (p<0.05). Feeding corn-lablab bean mixture silages increased milk yield and milk protein of dairy cows when compared with feeding corn silage (p<0.05). The economic benefit for cow fed corn-lablab bean mixture silages was 8.43 yuan/day/cow higher than that for that fed corn silage. In conclusion, corn-lablab bean mixture improved the fermentation characteristics and nutrient value of silage compared with monoculture corn. In this study, feeding corn-lablab bean mixture silages increased milk yield, milk protein and nutrient apparent digestibility of dairy cows compared with corn silage in northern China.

Studies on Corn-Legume intercropping System V. Effect of corn-legume intercropping system ondry matter yield and chemical composition in silage (Silage용 옥수수와 두과작물의 간작에 관한 연구 V. Silage용 옥수수 ( Zea mays L. ) 와 두과작물의 간작이 건물수량과 silage의 영양성분함량에 미치는 영향)

  • 이성규
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.10 no.2
    • /
    • pp.110-114
    • /
    • 1990
  • Although corn is regarded as the most feasible forage corp, its relatively low content of protein is the critical we a kness for animal feeding. Many researches have been carried out to improve protein level in corn forage, however, there are no indicatable results but corn-legume intercropping. Plot test and proximate analysis were fullfill to compare dry matter yield and available nutrients of silage corn mono-culture system with those of corn-legume intercropping system of forage plant and silage. The MO culture system were observed by two stage of maturity, milk stage (Aug. 3), yellow stage (Aug. 24), and obtained following results. 1. Dry matter yields per 10 a at milk stage in corn mono-culture system was 596.2kg and corn-legume intercropping systems were 609.0 kg (corn-cowpea), 591.0 kg (corn-soybean) and 563.1 kg (corn-frenchbean), respectively. And comparable to them, 1508.9 kg (corn mono.), 1482.8 kg (corn-cowpea), 1482.6 kg (cornsoybean), 1379.1 kg (corn-frenchbean) were harvested at yellow stage. 2. The general trends of chemical composition by stages of maturity in corn mono-culture systems were higher than that of corn-legume intercropping system. 3. Crude protein content in corn-legume silages were significantly higher than corn mono-culture at yellow stage, except corn-frenchbean intercropping system. 4. Crude fiber content in corn-legume silage was higher than corn mono-culture silage harvested at yellow stage. 5. Consequently, corn-legume intercropping improved nutritional quality of silage than that of corn-monocultivated silage.

  • PDF

Effects on fermentation of Corn-Broiler Excreta Silage by Addition of Corn-Meal (옥수수-계분 silage 제조시 옥수수 곡분 첨가가 silage발효에 미치는 영향)

  • 고영두;김재황;김두환;임용기
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.10 no.3
    • /
    • pp.172-178
    • /
    • 1990
  • This experiment was conducted to enhance nutritional value of whole crop corn silage and increase mixture levels of broiler excreta by adding of corn meal. Treatments were included non mixture(control), adding 10, 20, 30% of broiler excreta and adding 10, 20, 30% of broiler excreta and corn meal as a fresh matter basis, respectively. One liter laboratory silos were prepared. The characteristics of fermentation and micro-organisms during the silage process were assessed. The results obtained are summarized as follows: 1. The crude fiber, NDF and ADF contents were high in whole crop corn(P(O.Ol), crude protein and crude ash contents were high in the broiler excreta(P<0.05), and NFE content was high in corn meal (P< 0.05). 2. Crude protein content of silage was increased(I'$NH_3$-N contents of silage were markedly increased with increasing levels of broiler excreta and corn meal, and was the highest in the 30% broiler excreta treatment(P$meal$ <0.05), and Flieg's value gains "very good" by showing organic acids. 5. Numbers of total bacteria and lactobacilli were $10^5$ to $10^7$ and $10^5$ to $10^6$ , respectively, and were similar in all treatment. Colliform was all but annihilated in the treatment with mixture of broiler excreta and corn rneal.orn rneal.

  • PDF

Altering undigested neutral detergent fiber through additives applied in corn, whole barley crop, and alfalfa silages, and its effect on performance of lactating Holstein dairy cows

  • Hosseini, Seyed Mohsen;Mesgaran, Mohsen Danesh;Vakili, Ali Reza;Naserian, Abbas Ali;Khafipour, Ehsan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.375-386
    • /
    • 2019
  • Objective: We hypothesized that silage additives may alter the undigested neutral detergent fiber (uNDF) content through ensiling. Therefore, urea and formic acid were applied to corn, whole barley crop (WBC) and alfalfa to change uNDF content of the ensiled forages. Methods: Six experimental diets at two groups of high uNDF (untreated corn and alfalfa silages [CSAS] and untreated whole barley and alfalfa silages [BSAS]) and low uNDF (urea-treated corn silage+untreated alfalfa silage [$CS_UAS$], urea-treated whole barley silage+untreated alfalfa silage [$BS_UAS$], untreated corn silage+formic acid-treated alfalfa silage [$CSAS_F$], and untreated whole barley silage+formic acid-treated alfalfa silage [$BSAS_F$]), were allocated to thirty-six multiparous lactating Holstein dairy cows. Results: The untreated silages were higher in uNDF than additive treated silages, but the uNDF concentrations among silages were variable (corn silage0.05). Milk yield tended to increase in the cows fed high uNDF diets than those fed low uNDF (p = 0.10). The cows fed diet based on urea-treated corn silage had higher milk yield than those fed other silages (p = 0.05). The substitution of corn silage with the WBC silage tended to decrease milk production (p = 0.07). Changing the physical source of NDF supply and the uNDF content from the corn silage to the WBC silage caused a significant increase in ruminal $NH_3-N$ concentration, milk urea-N and fat yield (p<0.05). The cows fed diets based on WBC silage experienced greater rumination time than the cows fed corn silage (p<0.05). Conclusion: Administering additives to silages to reduce uNDF may improve the performance of Holstein dairy cows.

In Situ Dry Matter, Nitrogen and Phosphorous Disappearance of Different Feeds for Ruminants

  • Islam, M.R.;Ishida, M.;Ando, S.;Nishida, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.6
    • /
    • pp.793-799
    • /
    • 2002
  • Four feeds, three concentrates (rice bran, soybean meal and flaked corn) and one forage (corn silage) were incubated in four ruminally fistulated Holstein steers over three one week periods in a 3${\times}$4 incomplete latin square design where steers served as blocks and feeds as treatment. The objectives of the study were to investigate in situ DM, N and P degradability characteristics of feeds in order to assess availability of these nutrients by ruminants. In each period, all feeds were incubated in quadruplets (corn silage in triplicates) in the rumen of each steer in a reverse order for 3, 6, 9, 12, 18, 24 and 48 h. The DM 'a' fraction was higher and lower (p<0.001) in corn silage and rice bran respectively. Although corn silage contained the lowest (p<0.01) DM 'b' fraction, flaked corn contained the highest. Rate of DM degradation of flaked corn and corn silage were half (p<0.05) of the rate of DM degradation of either rice bran or soybean meal. Potential or effective DM degradability (p<0.05 to 0.001) at various passage rates were the lowest for rice bran and the highest for soybean meal. Corn silage N 'a' and 'b' was the highest and lowest, respectively (p<0.01). N 'c' of corn silage and rice bran was higher (p<0.001) than other feeds. Potential N degradability was the lowest in flaked corn (p<0.05). P 'a' was high (p<0.01) for corn silage and rice bran. P 'b' fraction was very high (p<0.001) in soybean meal but was absent in corn silage. Availability of DM (p<0.01 or 0.001), N (p<0.001) and P (p<0.05) differed between feeds at various passage rates except P availability at k=0.02 per h (p>0.05). The results demonstrate that the availability of DM, N and P by ruminants depends on feed as well as categories of animal.

Bacterial Inoculant Effects on Corn Silage Fermentation and Nutrient Composition

  • Jalc, D.;Laukova, Andrea;Pogany Simonova, M.;Varadyova, Z.;Homolka, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.7
    • /
    • pp.977-983
    • /
    • 2009
  • The survival and effect of three new probiotic inoculants (Lactobacillus plantarum CCM 4000, L. fermentum LF2, and Enterococcus faecium CCM 4231) on the nutritive value and fermentation parameters of corn silage was studied under laboratory conditions. Whole corn plants (288.3 g/kg DM) were cut and ensiled at $21^{\circ}C$ for 105 days. The inoculants were applied at a concentration of $1.0{\times}10^{9}$ cfu/ml. Uninoculated silage was used as the control. The chopped corn was ensiled in 40 plastic jars (1 L) divided into four groups (4${\times}$10 per treatment). All corn silages had a low pH (below 3.55) and 83-85% of total silage acids comprised lactic acid after 105 days of ensiling. The probiotic inoculants in the corn silages affected corn silage characteristics in terms of significantly (p<0.05-0.001) higher pH, numerically lower crude protein content and ratio of lactic to acetic acid compared to control silage. However, the inoculants did not affect the concentration of total silage acids (acetic, propionic, lactic acids) as well as dry matter digestibility (IVDMD) of corn silages in vitro. In the corn silages with three probiotic inoculants, significantly (CCM 4231, CCM 4000) lower n-6/n-3 ratio of fatty acids was detected than in control silage. Significant decrease in the concentration of $C_{18:1}$, and significant increase in the concentration of $C_{18:2}$ and $C_{18:3}$ was mainly found in the corn silages inoculated with the strains E. faecium CCM 4231 and L. plantarum CCM 4000. At the end of ensiling, the inoculants were found at counts of less than 1.0 log10 cfu/g in corn silages.

Study on Manufacture of Square Baled Corn Silage Using Square Silage Wrapping Compressor (소형 사각 곤포기를 이용한 옥수수 사각 압축곤포 사일리지 조제에 관한 연구)

  • Choi, Ki-Choon;Cho, Nam-Chul;Jung, Min-Woong;Kim, Jong-Geun;Shin, Jae-Soon;Lee, Kyung-Dong;Lim, Young-Chul;Kim, Won-Ho;Oh, Young-Keun;Kim, Cheon-Man;Kim, Hyuk-Gi;Han, Dong-Bae
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.1
    • /
    • pp.75-84
    • /
    • 2011
  • This study was conducted to investigate the effect of harvest stage of corn on the quality of square baled corn silage manufactured with corn grown in paddy land of Department of Animal Resources Development, National Institute of Animal Science, RDA from 2009 to 2010. Corn "Kwangpyungok" was harvested at three different growth stages (milk, yellow ripen and ripen stage) and ensiled at each harvest time. Square baled corn silage was manufactured by use of square silage wrapping compressor. Each treatment was replicated three times. The content of crude protein (CP) of corn in square baled corn silage decreased with delayed maturity, but the content of ADF (acid detergent fiber), NDF (neutral detergent fiber), TDN (total digestible nutrient) and in vitro dry matter digestibility (IVDMD) were not changed. The content of moisture, pH and the nutritive values at three different harvest stages were not influenced by the method of silage manufacture and inoculant. The content of lactate of square baled corn silage harvested in milk stage of corn was significantly increased, as compared with that of round baled corn silage (P<0.05), but in stage of yellow ripen was significantly decreased (P<0.05). The content of acetate in square baled corn silage significantly decreased with delayed harvest maturity, as compared with that of round baled corn silage (P<0.05). Flieg's score of square baled corn silage harvested in milk stage of corn was slightly higher than that of round baled corn silage, but Flieg's scores in yellow ripen stage and ripen stage were not influenced by the method of silage manufacture. Flieg's score with delayed maturity was not influenced by the method of silage manufacture and inoculant. The manufacture of square baled corn silage was proved to be suitable for the fermentation of corn silage. Therefore, this study suggest that square baled corn silage can be a way of new silage manufacture technique.

Effects of Aspergillus oryzae Inclusion on Corn Silage Fermentation

  • Chiou, Peter Wen-Shyg;Ku, Hsiao-Che;Chen, Chao-Ren;Yu, Bi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1568-1579
    • /
    • 2001
  • This study is aimed at evaluating the effect of Aspergillus oryzae fermentation extract (AFE) on corn silage fermentation characteristics. Trial included two groups of treatments, with or without AFE inclusion in corn ensilage. Sixty corn silage containers, including two treatments with thirty replicates each, were processed in a laboratory scale mini-silo of 21 cm radius by 45 cm height. Three replicate containers were opened and sampled for analysis at 0, 0.5, 1, 2, 3, 4, 6, 10, 18 and 34 days after being ensiled. One silage container from each treatment was installed with a remote controlled electronic thermometer to record the temperature changes. Analysis included silage temperature, pH, fermentation acids, the water-soluble carbohydrates and chemical compositions and the silage protein fractions. Results showed that on the first day, the temperature of the ensiled corn was slightly higher than room temperature, but returned to room temperature on the second day. The pH and concentrations of WSC, ADF, lignin and acetic acid in the AFE treated silage were significantly lower than the control groups (p<0.05). The lactic acid and crude protein on the other hand were significantly higher in the AFE treated silage as compared to the control (p<0.05) at the end of the ensilage period. The DM content was significantly higher (p<0.05) whereas the butyric acid content of the AFE treated silage was significantly lower (p<0.05) than the control at the end of the 34 day ensilage period. Titratable acid and buffering capacity in the corn silage were not significantly different between treatment groups (p>0.05). Ammonia N concentration in the AFE treated silage showed a trend of decrease (p>0.05). NPN and the protein fraction A in both groups increased during the conservation period, but fraction A in the AFE treated corn silage was significantly higher than the control silage (p<0.05). During the conservation period, the AFE treated corn silage showed a trend toward a decrease in fractions $B_1$, $B_3$ and C (p<0.05). The protein fraction B2 showed a trend toward increase in the control group and an inconsistent trend in the AFE treated silage during the ensiling period. The AFE treated silage showed a better Flieg score over the control silage (97 vs. 75) as calculated from the concentrations of lactic acid, acetic acid and butyric acid.

Effects of Alfalfa and Brown Mid-rib Corn Silage and Level of Forage Neutral Detergent Fiber on Animal Performance of Lactating Cows in Michigan

  • Min, Doo-Hong;Bucholtz, Herb;Naasz, Paul
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.3
    • /
    • pp.373-377
    • /
    • 2007
  • Alfalfa silage and corn silage are the major dairy feeds in most dairy operations in Michigan, USA. In recent years, the need to improve digestible fiber and dry matter intake of forages to meet the nutrient requirements of high yielding dairy cows and the willingness to plant corn specifically for silage has led plant breeders to focus on the brown mid-rib (BMR) trait. The objective of this study was to investigate the effect of different ratio of alfalfa to BMR corn silage and ration level of forage neutral detergent fiber (NDF) on animal performance of lactating cows in the Upper Peninsula of Michigan. This study was conducted at the Upper Peninsula Experiment Station of Michigan State University in Chatham, Michigan, USA. Two different ratios of forage type (high alfalfa silage/low BMR corn silage, AS, and high BMR corn silage/low alfalfa silage, BMRCS) and two different dietary NDF contents (27% NDF, 27 = low forage/high grain feeding, and 33% NDF, 33 = high forage/low grain feeding) were used. The experimental design was a $4{\times}4$ Latin Square with 20 milking cows (12 multiparous and 8 primiparous). This trial had four 21-day periods with 14 d adaptation and 7 d data collection. Milk yield and body condition score (BCS) on the AS-27, BMRCS-27 and BMRCS-33 treatments were significantly (p<0.05) higher than on the AS-33 treatment. Dry matter intake of the AS-27 and BMRCS-27 treatments was significantly (p<0.05) higher than for the AS-33 and BMRCS-33 treatments. Milk urea nitrogen (MUN) on the AS-33 treatment was significantly (p<0.05) higher than on the other diet treatments. A key finding of this study was that the BMRCS-33 (higher amounts of brown mid-rib corn silage than alfalfa silage, high forage and low grain feeding diet at 33% NDF) led to the equal highest milk production whilst having the equal lowest dry matter intake. This study demonstrated that the diet with higher ratio of highly digestible NDF forage such as brown mid-rib corn silage to alfalfa silage could lower grain feeding in the ration.